2 resultados para Threshold estimation

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we describe an algorithm that automatically detects and labels peaks I - VII of the normal, suprathreshold auditory brainstem response (ABR). The algorithm proceeds in three stages, with the option of a fourth: ( 1) all candidate peaks and troughs in the ABR waveform are identified using zero crossings of the first derivative, ( 2) peaks I - VII are identified from these candidate peaks based on their latency and morphology, ( 3) if required, peaks II and IV are identified as points of inflection using zero crossings of the second derivative and ( 4) interpeak troughs are identified before peak latencies and amplitudes are measured. The performance of the algorithm was estimated on a set of 240 normal ABR waveforms recorded using a stimulus intensity of 90 dBnHL. When compared to an expert audiologist, the algorithm correctly identified the major ABR peaks ( I, III and V) in 96 - 98% of the waveforms and the minor ABR peaks ( II, IV, VI and VII) in 45 - 83% of waveforms. Whilst peak II was correctly identified in only 83% and peak IV in 77% of waveforms, it was shown that 5% of the peak II identifications and 31% of the peak IV identifications came as a direct result of allowing these peaks to be found as points of inflection. Copyright (C) 2005 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All muscle contractions are dependent on the functioning of motor units. In diseases such as amyotrophic lateral sclerosis (ALS), progressive loss of motor units leads to gradual paralysis. A major difficulty in the search for a treatment for these diseases has been the lack of a reliable measure of disease progression. One possible measure would be an estimate of the number of surviving motor units. Despite over 30 years of motor unit number estimation (MUNE), all proposed methods have been met with practical and theoretical objections. Our aim is to develop a method of MUNE that overcomes these objections. We record the compound muscle action potential (CMAP) from a selected muscle in response to a graded electrical stimulation applied to the nerve. As the stimulus increases, the threshold of each motor unit is exceeded, and the size of the CMAP increases until a maximum response is obtained. However, the threshold potential required to excite an axon is not a precise value but fluctuates over a small range leading to probabilistic activation of motor units in response to a given stimulus. When the threshold ranges of motor units overlap, there may be alternation where the number of motor units that fire in response to the stimulus is variable. This means that increments in the value of the CMAP correspond to the firing of different combinations of motor units. At a fixed stimulus, variability in the CMAP, measured as variance, can be used to conduct MUNE using the "statistical" or the "Poisson" method. However, this method relies on the assumptions that the numbers of motor units that are firing probabilistically have the Poisson distribution and that all single motor unit action potentials (MUAP) have a fixed and identical size. These assumptions are not necessarily correct. We propose to develop a Bayesian statistical methodology to analyze electrophysiological data to provide an estimate of motor unit numbers. Our method of MUNE incorporates the variability of the threshold, the variability between and within single MUAPs, and baseline variability. Our model not only gives the most probable number of motor units but also provides information about both the population of units and individual units. We use Markov chain Monte Carlo to obtain information about the characteristics of individual motor units and about the population of motor units and the Bayesian information criterion for MUNE. We test our method of MUNE on three subjects. Our method provides a reproducible estimate for a patient with stable but severe ALS. In a serial study, we demonstrate a decline in the number of motor unit numbers with a patient with rapidly advancing disease. Finally, with our last patient, we show that our method has the capacity to estimate a larger number of motor units.