4 resultados para Threespine Stickleback
em University of Queensland eSpace - Australia
Resumo:
Natural populations inhabiting the same environment often independently evolve the same phenotype. Is this replicated evolution a result of genetic constraints imposed by patterns of genetic covariation? We looked for associations between directions of morphological divergence and the orientation of the genetic variance-covariance matrix (G) by using an experimental system of morphological evolution in two allopatric nonsister species of rainbow fish. Replicate populations of both Melanotaenia eachamensis and Melanotaenia duboulayi have independently adapted to lake versus stream hydrodynamic environments. The major axis of divergence (z) among all eight study populations was closely associated with the direction of greatest genetic variance (g(max)), suggesting directional genetic constraint on evolution. However, the direction of hydrodynamic adaptation was strongly associated with vectors of G describing relatively small proportions of the total genetic variance, and was only weakly associated with g(max). In contrast, divergence between replicate populations within each habitat was approximately proportional to the level of genetic variance, a result consistent with theoretical predictions for neutral phenotypic divergence. Divergence between the two species was also primarily along major eigenvectors of G. Our results therefore suggest that hydrodynamic adaptation in rainbow fish was not directionally constrained by the dominant eigenvector of G. Without partitioning divergence as a consequence of the adaptation of interest (here, hydrodynamic adaptation) from divergence due to other processes, empirical studies are likely to overestimate the potential for the major eigenvectors of G to directionally constrain adaptive evolution.
Resumo:
This chapter outlines the relationships between a number of key factors that influence learning and memory, and illustrates them by reference to studies on the foraging behaviour of fish. Learning can lead to significant improvements in foraging performance in only a few exposures, and at least some fish species are capable of adjusting their foraging strategy as patterns of patch profitability change. There is also evidence that the memory window for prey varies between fish species, and that this may be a function of environmental predictability. Convergence between behavioural ecology and comparative psychology offers promise in terms of developing more mechanistically realistic foraging models and explaining apparently 'suboptimal' patterns of behaviour. Foraging decisions involve the interplay between several distinct systems of learning and memory, including those that relate to habitat, food patches, prey types, conspecifics and predators. Fish biologists, therefore, face an interesting challenge in developing integrated accounts of fish foraging that explain how cognitive sophistication can help individual animals to deal with the complexity of the ecological context.
Resumo:
Mechanisms of speciation are not well understood, despite decades of study. Recent work has focused on how natural and sexual selection cause sexual isolation. Here, we investigate the roles of divergent natural and sexual selection in the evolution of sexual isolation between sympatric species of threespine sticklebacks. We test the importance of morphological and behavioral traits in conferring sexual isolation and examine to what extent these traits have diverged in parallel between multiple, independently evolved species pairs. We use the patterns of evolution in ecological and mating traits to infer the likely nature of selection on sexual isolation. Strong parallel evolution implicates ecologically based divergent natural and/or sexual selection, whereas arbitrary directionality implicates nonecological sexual selection or drift. In multiple pairs we find that sexual isolation arises in the same way: assortative mating on body size and asymmetric isolation due to male nuptial color. Body size and color have diverged in a strongly parallel manner, similar to ecological traits. The data implicate ecologically based divergent natural and sexual selection as engines of speciation in this group.
Resumo:
Although generalist predators have been reported to forage less efficiently than specialists, there is little information on the extent to which learning can improve the efficiency of mixed-prey foraging. Repeated exposure of silver perch to mixed prey (pelagic Artemia and benthic Chironomus larvae) led to substantial fluctuations in reward rate over relatively long (20-day) timescales. When perch that were familiar with a single prey type were offered two prey types simultaneously, the rate at which they captured both familiar and unfamiliar prey dropped progressively over succeeding trials. This result was not predicted by simple learning paradigms, but could be explained in terms of an interaction between learning and attention. Between-trial patterns in overall intake were complex and differed between the two prey types, but were unaffected by previous prey specialization. However, patterns of prey priority (i.e. the prey type that was preferred at the start of a trial) did vary with previous prey training. All groups of fish converged on the most profitable prey type (chironomids), but this process took 15-20 trials. In contrast, fish offered a single prey type reached asymptotic intake rates within five trials and retained high capture abilities for at least 5 weeks. Learning and memory allow fish to maximize foraging efficiency on patches of a single prey type. However, when foragers are faced with mixed prey populations, cognitive constraints associated with divided attention may impair efficiency, and this impairment can be exacerbated by experience. (c) 2005 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.