116 resultados para Three-body resonances
em University of Queensland eSpace - Australia
Resumo:
It is argued that the common classification of abrasive wear into 'two-body abrasion' and 'three-body abrasion' is seriously flawed. No definitions have been agreed upon for these terms, and indeed there are two quite different interpretations, the implications of which are mutually inconsistent. In the dominant interpretation, the primary thrust of the two-body/three-body concept is to describe whether the abrasive particles are constrained (two-body) or free to roll (three-body). In this view, two-body abrasion is generally much more severe than three-body. The alternative interpretation emphasises the presence (three-body) or absence (two-body) of a rigid counterface backing the abrasive. In this view, three-body abrasion is equated to high-stress (or grinding) abrasion and is generally more severe than two-body (low-stress) abrasion. This paper recommends that the 'two-body/three-body' terminology be abandoned, to be replaced by an alternative classification scheme based directly upon the manifest severity of wear. (C) 1998 Elsevier Science S.A.
Resumo:
We apply the truncated Wigner method to the process of three-body recombination in ultracold Bose gases. We find that within the validity regime of the Wigner truncation for two-body scattering, three-body recombination can be treated using a set of coupled stochastic differential equations that include diffusion terms, and can be simulated using known numerical methods. As an example we investigate the behavior of a simple homogeneous Bose gas, finding a very slight increase of the loss rate compared to that obtained by using the standard method.
Resumo:
Different abrasive wear tests have been applied to materials with hardnesses ranging from 80 HV (aluminium) to 1700 HV (tungsten carbide). The tests were: dry sand rubber wheel (DSRbrW); a similar test using a steel wheel (DSStlW); a new combined impact-abrasion test (FIA). The DSRbrW results were as expected, giving generally decreasing wear with increasing hardness. White cast irons and tool steels containing coarse, hard carbide particles performed better than more homogeneous materials of comparable hardness. When normalized to load and distance, the DSStlW results for the homogeneous materials were similar to the DSRbrW results. The multi-phase materials performed poorly in the DSStlW test, with volume loss for high-speed steel (880 HV) higher than that of aluminium. Within this group, wear increased with increasing hardness. These unexpected results are explained in terms of (a) differential friction coefficients of wheel and specimen, (b) increased fracture of sand, and (c) introduction of microfracture wear mechanisms. The FIA combined impact-abrasion results lacked clear correlations with hardness. The span of relative wear rates was similar to that reported for materials in ball mills. White cast irons at maximum hardness performed fairly poorly and showed evidence of microfracture. (C) 1997 Elsevier Science S.A.
Resumo:
Introduction Bioelectrical impedance analysis (BIA) is a useful field measure to estimate total body water (TBW). No prediction formulae have been developed or validated against a reference method in patients with pancreatic cancer. The aim of this study was to assess the agreement between three prediction equations for the estimation of TBW in cachectic patients with pancreatic cancer. Methods Resistance was measured at frequencies of 50 and 200 kHz in 18 outpatients (10 males and eight females, age 70.2 +/- 11.8 years) with pancreatic cancer from two tertiary Australian hospitals. Three published prediction formulae were used to calculate TBW - TBWs developed in surgical patients, TBWca-uw and TBWca-nw developed in underweight and normal weight patients with end-stage cancer. Results There was no significant difference in the TBW estimated by the three prediction equations - TBWs 32.9 +/- 8.3 L, TBWca-nw 36.3 +/- 7.4 L, TBWca-uw 34.6 +/- 7.6 L. At a population level, there is agreement between prediction of TBW in patients with pancreatic cancer estimated from the three equations. The best combination of low bias and narrow limits of agreement was observed when TBW was estimated from the equation developed in the underweight cancer patients relative to the normal weight cancer patients. When no established BIA prediction equation exists, practitioners should utilize an equation developed in a population with similar critical characteristics such as diagnosis, weight loss, body mass index and/or age. Conclusions Further research is required to determine the accuracy of the BIA prediction technique against a reference method in patients with pancreatic cancer.
Resumo:
Prediction equations of body composition based on measurements of whole-body bioelectrical impedance analysis (BIA) have been found to be population-specific. It was hypothesised that this may be, in part, due to differences in proportional limb lengths between ethnic or racial groups. As a preliminary to a survey of body composition in urban Nigerians using BIA, the relative limb lengths of the three major tribal groups (Hausa, Yoruba and Ibo) were determined. We found small (5-9%) but significantly longer limb lengths in Nigerians compared to a Caucasian population, but no significant differences between tribes. This implies that BIA prediction equations generated in a Caucasian population are inappropriate for use in a Nigerian population.
Resumo:
We study the behavior of a two-level atom that is driven by a bichromatic field consisting of a strong resonant component and a weaker tunable component. In addition to the splitting of the energy levels (the multiphoton AC Stark effect), we find that the weaker component also shifts the subharmonic resonances, an effect we attribute to a dynamic Stark shift. When the weaker component is tuned to a shifted resonance, no fluorescence occurs at either the frequency of the strong component or the three-photon mixing frequency. Results are obtained with numerical techniques and explained in terms of the dressed-atom model of the system. (C) 1998 Optical Society of America [S0740-3224(98)01508-2] OCIS codes: 270.4180, 270.6620, 270.0270.
Resumo:
New techniques in air-displacement plethysmography seem to have overcome many of the previous problems of poor reproducibility and validity. These have made body-density measurements available to a larger range of individuals, including children, elderly and sick patients who often have difficulties in being submerged underwater in hydrodensitometry systems. The BOD POD air-displacement system (BOD POD body composition system; Life Measurement Instruments, Concord, CA, USA) is more precise than hydrodensitometry, is simple and rapid to operate (approximately 1 min measurements) and the results agree closely with those of hydrodensitometry (e.g. +/-3.4% for estimation of body fat). Body line scanners employing the principles of three-dimensional photography are potentially able to measure the surface area and volume of the body and its segments even more rapidly (approximately 10 s), but the validity of the measurements needs to be established. Advances in i.r. spectroscopy and mathematical modelling for calculating the area under the curve have improved precision for measuring enrichment of (H2O)-H-2 in studies of water dilution (CV 0.1-0.9% within the range of 400-1000 mu l/l) in saliva, plasma and urine. The technique is rapid and compares closely with mass spectrometry (bias 1 (SD 2) %). Advances in bedside bioelectrical-impedance techniques are making possible potential measurements of skinfold thicknesses and limb muscle mass electronically. Preliminary results suggest that the electronic method is more reproducible (intra-and inter-individual reproducibility for measuring skinfold thicknesses) and associated with less bias (+ 12%), than anthropometry (+ 40%). In addition to these selected examples, the 'mobility' or transfer of reference methods between centres has made the distinction between reference and bedside or field techniques less distinct than in the past.
Resumo:
The frequency dependence of the interlayer conductivity of a layered Fermi liquid in a magnetic field that is tilted away from the normal to the layers is considered. For both quasi-one- and quasi-two-dimensional systems resonances occur when the frequency is a harmonic of the frequency at which the magnetic field causes the electrons to oscillate on the Fermi surface within the layers. The intensity of the different harmonic resonances varies significantly with the direction of the field. The resonances occur for both coherent and weakly incoherent interlayer transport and so their observation does not imply the existence of a three-dimensional Fermi surface. [S0163-1829(99)51240-X].
Resumo:
Three-dimensional trunk motion. trunk muscle electromyography and intra-abdominal pressure were evaluated to investigate the preparatory control of the trunk associated with voluntary unilateral upper limb movement. The directions of angular motion produced by moments reactive to limb movement in each direction were predicted using a three-dimensional model of the body. Preparatory motion of the trunk occurred in three dimensions in the directions opposite to the reactive moments. Electromyographic recordings from the superficial trunk muscles were consistent with preparatory trunk motion. However, activation of transversus abdominis was inconsistent with control of direction-specific moments acting on the trunk. The results provide evidence that anticipatory postural adjustments result in movements and not simple rigidification of the trunk. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Fifty-four Large White gilts were used to determine the effect of body composition at selection (145 d of age) on the onset of puberty and subsequent reproductive development until 202 d of age. Gilts were assigned to one of three groups based on their backfat depth at selection: 10 to 12 mm (L), 13 to 15 mm (M), and 16 to 18 mm (F). All of the F gilts, 92% of the M gilts, and 67% of the L gilts reached puberty by slaughter at 202 d of age. Data from a subgroup (first 67% to reach puberty in each group; L = Lp, M = Mp, and F = Fp) was also used. The M (Mp) and F (Fp) gilts reached puberty at 172 d (166 d) and 170 d (166 d) of age, respectively, but the L (Lp) gilts at 184.5 d were 12 d (18 d) older than M(P < .05), Mp(P < .001), and F(P < .01), Fp (P < .001) gilts. The Lp (97.68 kg) and Mp (98.33 kg) gilts were lighter (P < .01) than Fp (108.72 kg) gilts at puberty. There were no differences (P < .05) among the L, M, and F gilts in terms of backfat depth or weight at puberty. The L (Lp) gilts had a mean of 1.16 (1.75) estrous cycles, which was lower (P < .01) than for M (Mp) and (P < .01) F (Fp) gilts, with 1.96 (2.29) and 2.25 (2.33) cycles, respectively. L (Lp) gilts had fewer (P < .05) follicles, 13.14 (12.63), than either M (Mp), 19.08 (18.71), or F (Fp), 18.25 (17.42) gilts. The number of corpora lutea was not influenced (P > .05) by grouping at selection, but Fp gilts had fewer (P < .05) corpora lutea than Mp or Fp gilts. Live weight at slaughter was not influenced (P > .10) by grouping at selection or subgrouping at puberty. The L gilts with a mean of 18.05 mm of backfat at slaughter were leaner (P < .05) than the F (21.66 mm) but not (P > .10) the M gilts (19.41 mm). Subgrouping had no effect. Fat deposition and protein deposition were higher (P < .05) in those animals that attained puberty. We conclude that the rate of fat and protein deposition seems to be one of the determinants of puberty attainment.
Resumo:
The objective was to investigate the genetic epidemiology of figural stimuli. Standard figural stimuli were available from 5,325 complete twin pairs: 1,751 (32.9%) were monozygotic females, 1,068 (20.1%) were dizygotic females, 752 (14.1%) were monozygotic males, 495 (9.3%) were dizygotic males, and 1,259 (23.6%) were dizygotic male-female pairs. Univariate twin analyses were used to examine the influences on the individual variation in current body size and ideal body size. These data were analysed separately for men and women in each of five age groups. A factorial analysis of variance, with polychoric correlations between twin pairs as the dependent variable, and age, sex, zygosity, and the three interaction terms (age x sex, age x zygosity, sex x zygosity) as independent variables, was used to examine trends across the whole data set. Results showed genetic influences had the largest impact on the individual variation in current body size measures, whereas non-shared environmental influences were associated with the majority of individual variation in ideal body size. There was a significant main effect of zygosity (heritability) in predicting polychoric correlations for current body size and body dissatisfaction. There was a significant main effect of gender and zygosity in predicting ideal body size, with a gender x zygosity interaction. In common with BMI, heritability is important in influencing the estimation of current body size. Selection of desired body size for both men and women is more strongly influenced by environmental factors.
Resumo:
We study the effect of quantum interference on the population distribution and absorptive properties of a V-type three-level atom driven by two lasers of unequal intensities and different angular frequencies. Three coupling configurations of the lasers to the atom are analysed: (a) both lasers coupled to the same atomic transition, (b) each laser coupled to different atomic transition and (c) each laser coupled to both atomic transitions. Dressed stales for the three coupling configurations are identified, and the population distribution and absorptive properties of the weaker field are interpreted in terms of transition dipole moments and transition frequencies among these dressed states. In particular, we find that in the first two cases there is no population inversion between the bare atomic states, but the population can be trapped in a superposition of the dressed states induced by quantum interference and the stronger held. We show that the trapping of the population, which results from the cancellation of transition dipole moments, does not prevent the weaker field to be coupled to the cancelled (dark) transitions. As a result, the weaker field can be strongly amplified on transparent transitions. In the case of each laser coupled to both atomic transitions the population can be trapped in a linear superposition of the excited bare atomic states leaving the ground state unpopulated in the steady state. Moreover, we find that the absorption rate of the weaker field depends on the detuning of the strong field from the atomic resonances and the splitting between the atomic excited states. When the strong held is resonant to one of the atomic transitions a quasi-trapping effect appears in one of the dressed states. In the quasi-trapping situation all the transition dipole moments are different from zero, which allows the weaker field to be amplified on the inverted transitions. When the strong field is tuned halfway between the atomic excited states, the population is completely trapped in one of the dressed states and no amplification is found for the weaker field.
Resumo:
The specific status of the head and body lice of humans has been debated for more than 200 yr. To clarify the specific status of head and body lice, we sequenced 524 base pairs (bp) of the cytochrome oxidase I (COI) gene of 28 head and 28 body lice from nine countries. Ten haplotypes that differed by 1-5 bp at II nucleotide positions were identified. A phylogeny of these sequences indicates that these head and body lice are not from reciprocally monophyletic lineages. Indeed, head and body lice share three of the 10 haplotypes we found. F-ST values and exact tests of haplotype frequencies showed significant differences between head and body lice. However, the same tests also showed significant differences among lice from different countries. Indeed, more of the variation in haplotype frequencies was explained by differences among lice from different countries than by differences between head and body lice. Our results indicate the following: (1) bead and body lice do not represent reciprocally monophyletic lineages and are conspecific; (2) gene flow among populations of lice from different countries is limited; and (3) frequencies of COI haplotypes can be used to study maternal gene flow among populations of head and body lice and thus transmission of lice among their human hosts.