6 resultados para Thoracolumbar

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. The mechanisms by which the abdominal muscles move and control the lumbosacral spine are not clearly understood. Descriptions of abdominal morphology are also conflicting and the regional anatomy of these muscles has not been comprehensively examined. The aim of this study was to investigate the morphology of regions of transversus abdominis and obliquus internus and externus abdominis. Methods. Anterior and posterolateral abdominal walls were dissected bilaterally in 26 embalmed human cadavers. The orientation, thickness and length of the upper, middle and lower fascicles of transversus abdominis and obliquus internus abdominis, and the upper and middle fascicles of obliquus externus abdominis were measured. Findings. Differences in fascicle orientation, thickness and length were documented between the abdominal muscles and between regions of each muscle. The fascicles of transversus abdominis were horizontal in the upper region, with increasing inferomedial orientation in the middle and lower regions. The upper and middle fascicles of obliquus internus abdominis were oriented superomedially and the lower fascicles inferomedially. The mean vertical dimension of transversus abdominis that attaches to the lumbar spine via the thoracolumbar fascia was 5.2 (SD 2.1) cm. Intramuscular septa were observed between regions of transversus abdominis, and obliquus internus abdominis could be separated into two distinct layers in the lower and middle regions. Interpretation. This study provides quantitative data of morphological differences between regions of the abdominal muscles, which suggest variation in function between muscle regions. Precise understanding of abdominal muscle anatomy is required for incorporation of these muscles into biomechanical models. Furthermore, regional variation in their morphology may reflect differences in function. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurodynamic tests such as the straight leg raising (SLR) and slump test are frequently used for assessment of mechanosensitivity of neural tissues. However, there is ongoing debate in the literature regarding the contributions of neural and non-neural tissues to the elicited symptoms because many structures are affected by these tests. Sensitizing manoeuvres are limb or spinal movements added to neurodynamic tests, which aim to identify the origin of the symptoms by preferentially loading or unloading neural structures. A prerequisite for the use of sensitizing manoeuvres to identify neural involvement is that the addition of sensitizing manoeuvres has no impact on pain perception when the origin of the pain is non-neural. In this study, experimental muscle pain was induced by injection of hypertonic saline in tibialis anterior or soleus in 25 asymptomatic, naive volunteers. A first experiment investigated the impact of hip adduction, abduction, medial and lateral rotation in the SLR position. In a second experiment, the different stages of the slump test were examined. The intensity and area of experimentally induced muscle pain did not increase when sensitizing manoeuvres were added to the SLR or throughout the successive stages of the slump test. The findings of this study lend support to the validity of the use of sensitizing manoeuvres during neurodynamic testing. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design. Survey of intraobserver and interobserver measurement variability. Objective. To assess the use of reformatted computerized tomography (CT) images for manual measurement of coronal Cobb angles in idiopathic scoliosis. Summary of Background Data. Cobb angle measurements in idiopathic scoliosis are traditionally made from standing radiographs, whereas CT is often used for assessment of vertebral rotation. Correlating Cobb angles from standing radiographs with vertebral rotations from supine CT is problematic because the geometry of the spine changes significantly from standing to supine positions, and 2 different imaging methods are involved. Methods. We assessed the use of reformatted thoracolumbar CT images for Cobb angle measurement. Preoperative CT of 12 patients with idiopathic scoliosis were used to generate reformatted coronal images. Five observers measured coronal Cobb angles on 3 occasions from each of the images. Intraobserver and interobserver variability associated with Cobb measurement from reformatted CT scans was assessed and compared with previous studies of measurement variability using plain radiographs. Results. For major curves, 95% confidence intervals for intraobserver and interobserver variability were +/- 6.6 degrees and +/- 7.7 degrees, respectively. For minor curves, the intervals were +/- 7.5 degrees and +/- 8.2 degrees, respectively. Intraobserver and interobserver technical error of measurement was 2.4 degrees and 2.7 degrees, with reliability coefficients of 88% and 84%, respectively. There was no correlation between measurement variability and curve severity. Conclusions. Reformatted CT images may be used for manual measurement of coronal Cobb angles in idiopathic scoliosis with similar variability to manual measurement of plain radiographs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design. A comparative study of trunk and hip extensor muscle recruitment patterns in 2 subject groups. Objective. To examine for changes in recruitment of the hip and back extensor muscles during low level isometric trunk rotation efforts in chronic low back pain (CLBP) subjects by comparison with matched asymptomatic control subjects. Summary of Background Data. Anatomic and biomechanical models have provided evidence that muscles attaching to the thoracolumbar fascia (TLF) are important for providing stabilization to the lumbopelvic region during trunk rotation. This has guided rehabilitation programs. The muscles that link diagonally to the posterior layer of the TLF have not previously been examined individually and compared during low-level trunk rotation efforts in CLBP patients and matched controls. Methods. Thirty CLBP patients and 30 matched controls were assessed using surface electromyography (EMG) as they performed low-level isometric rotation efforts while standing upright. Muscles studied included latissimus dorsi, erector spinae, upper and lower gluteus maximus, and biceps femoris. Subjects performed the rotation exertion with various levels of external trunk support, related to different functional tasks. Results. EMG results demonstrated that subjects with CLBP had significantly higher levels of recruitment for the lower and upper gluteus maximus (P < 0.05), hamstrings (P < 0.05), and erector spinae muscles (P < 0.05) during rotation to the left compared with the control subjects. Conclusion. This study provided evidence of increased muscle recruitment in CLBP patients when performing a standardized trunk rotation task. These results may have implications for the design of therapeutic exercise programs for CLBP patients.