4 resultados para Thin nanostructured films

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A scaling law is presented that provides a complete solution to the equations bounding the stability and rupture of thin films. The scaling law depends on the fundamental physicochemical properties of the film and interface to calculate bounds for the critical thickness and other key film thicknesses, the relevant waveforms associated with instability and rupture, and film lifetimes. Critical thicknesses calculated from the scaling law are shown to bound the values reported in the literature for numerous emulsion and foam films. The majority of critical thickness values are between 15 to 40% lower than the upper bound critical thickness provided by the scaling law.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Mesostructured titania thin films were prepared by an evaporation-induced self-assembly process. The highly acidic sot precursors contained titanium(IV) tetraisopropoxide (TTIP) as a titanium source, a tri-block copolymer Pluronic P123 as a template, and acetylacetonate and HCl as hydrolysis inhibitors. Characteristics of the resultant titania thin films were studied using X-ray diffraction (XRD) analysis, N-2-adsorption/desorption analysis, and transmission electron microscopy (TEM). XRD and TEM investigations on the as-synthesised films revealed the appearance of cubic-like, pseudohexagonal, and lamellar mesophases; depending on the amount of water in the sols of film precursors. Template removal by a calcination process yields high surface area (320-360 m(2)/g) mesoporous materials with crystalline anatase frameworks. Water content also influences the degree of anatase crystallinity of the calcined films. Higher water content resulted in improved anatase crystallinity. These nanostructured materials are of interest for photocatalysts, pbotoelectrochemical solar cells and other photonic devices. (C) 2003 Elsevier B.V. All rights reserved.