51 resultados para Thermal nociceptive threshold
em University of Queensland eSpace - Australia
Resumo:
Objective: This study aimed to investigate how local pain relief is mediated by laser therapy and how dose affects the relationship. Methods: Inflammation was induced in the hind-paws of Wistar rats. Two groups of rats received 780-nm laser therapy (Spectra-Medics Pty Ltd.) at one of two doses (2.5 and 1 J/cm(2)). One group acted as a control. Scores of nociceptive threshold were recorded using paw pressure and paw thermal threshold measures. Results: A dose of 1 J/cm(2) had no statistically significant effect on antinociceptive responses. A dose of 2.5 J/cm(2) demonstrated a statistically significant effect on paw pressure threshold (p < 0.029) compared to controls. There was no difference in paw thermal threshold responses and paw volumes at either dose. Immunohistochemistry in control animals demonstrated normal beta-endorphin containing lymphocytes in control inflamed paws but no beta-endorphin containing lymphocytes in rats that received laser at 2.5 J/cm(2). Conclusion: The results confirm previous findings that the effect of laser therapy is dose-related. The mechanism of effect may occur via a differentiated pressure-sensitive neural pathway rather than a thermal-sensitive neural pathway. The significance of the immunohistochemistry findings remains unknown.
Resumo:
Objective: To investigate a proposed model in which manipulative therapy produces a treatment-specific initial hypoalgesic and sympathoexcitatory effect by activating a descending pain inhibitory system. The a priori hypothesis tested was that manipulative therapy produces mechanical hypoalgesia and sympatho-excitation beyond that produced by placebo or control. Furthermore, these effects would be correlated, thus supporting the proposed model. Design: A randomized, double-blind, placebo-controlled, repeated-measures study of the initial effect of treatment. Setting: Clinical neurophysiology laboratory. Subjects: Twenty-four subjects (13 women and 11 men; mean age, 49 yr) with chronic lateral epicondylalgia (average duration, 6.2 months). Intervention: Cervical spine lateral glide oscillatory manipulation, placebo and control. Outcome Measures: Pressure pain threshold, thermal pain threshold, pain-free grip strength test, upper limb tension test 2b, skin conductance, pileous and glabrous skin temperature and blood flux. Results: Treatment produced hypoalgesic and sympathoexcitatory changes significantly grater than those of placebo and control (p < .03). Confirmatory factor-analysis modeling, which was performed on the pain-related measures and the indicators of sympathetic nervous system function, demonstrated a significant correlation (r = .82) between the latencies of manipulation-induced hypoalgesia and sympathoexcitation. The Lagrange Multiplier test and Wald test indicated that the two latent factors parsimoniously and appropriately represented their observed variables. Conclusions: Manual therapy produces a treatment-specific initial hypoalgesic and sympathoexcitatory effect beyond that of placebo or control. The strong correlation between hypoalgesic and sympathoexcitatory effects suggests that a central control mechanism might be activated by manipulative therapy.
Resumo:
Physiotherapists frequently use manipulative therapy techniques to treat dysfunction and pain resulting from ankle sprain. This study investigated whether a Mulligan's mobilization with movement (MWM) technique improves talocrural dorsiflexion, a major impairment following ankle sprain, and relieves pain in subacute populations. Fourteen subjects with subacute grade II lateral ankle sprains served as their own control in a repeated measures, double-blind randomized controlled trial that measured the initial effects of the MWM treatment on weight bearing dorsiflexion and pressure and thermal pain threshold. The subacute ankle sprain group studied displayed deficits in dorsiflexion and local pressure pain threshold in the symptomatic ankle. Significant improvements in dorsiflexion occurred initially post-MWM (F-(2,F-26) 7.82, P = 0.002), but no significant changes in pressure or thermal pain threshold were observed after the treatment condition. Results indicate that the MWM treatment for ankle dorsiflexion has a mechanical rather than hypoalgesic effect in subacute ankle sprains. The mechanism by which this occurs requires investigation if we are to better understand the role of manipulative therapy in ankle sprain management. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Background: Recent research has shown that Mulligan's Mobilization With Movement treatment technique for the elbow (MWM), a peripheral joint mobilization technique, produces a substantial and immediate pain relief in chronic lateral epicondylalgia (48% increase in pain-free grip strength).(1) This hypoalgesic effect is far greater than that previously reported with spinal manual therapy treatments, prompting speculation that peripheral manual therapy treatments may differ in mechanism of action to spinal manual therapy techniques. Naloxone antagonism and tolerance studies, which employ widely accepted tests for the identification of endogenous opioid-mediated pain control mechanisms, have shown that spinal manual therapy-induced hypoalgesia does not involve an opioid mechanism. Objective: The aim of this study was to evaluate the effect of naloxone administration on the hypoalgesic effect of MWM. Methods: A randomized, controlled trial evaluated the effect of administering naloxone, saline, or no-substance control injection on the MWM-induced hypoalgesia in 18 participants with lateral epicondylalgia. Pain-free grip strength, pressure pain threshold, thermal pain threshold, and upper limb neural tissue provocation test 2b were the outcome measures. Results: The results demonstrated that the initial hypoalgesic effect of the MWM was not antagonized by naloxone, suggesting a nonopioid mechanism of action. Conclusions: The studied peripheral mobilization treatment technique appears to have a similar effect profile to previously studied spinal manual therapy techniques, suggesting a nonopioid-mediated hypoalgesia following manual therapy.
Resumo:
Aims: To characterise chronic lateral epicondylalgia using the McGill Pain Questionnaire, Visual Analog Scales for pain and function, and Quantitative Sensory Tests; and to examine the relationship between these tests in a population with chronic lateral epicondylalgia. Method: Fifty-six patients (29 female, 27 male) diagnosed with unilateral lateral epicondylalgia of 18.7 months (mean) duration (range 1-300), with a mean age of 50.7 years (range 27-73) participated in this study. Each participant underwent assessment with the McGill Pain Questionnaire (MPQ), Visual Analog Scales (VAS) for pain and function. and Quantitative Sensory Tests (QST) including thermal and pressure pain thresholds, pain free grip strength, and neuromeningeal tissue testing via the upper limb tension test 2b (ULTT 2b). Results: Moderate correlation (r = .338-.514, p = .000-.013) was found between all indices of the MPQ and VAS for pain experienced in the previous 24 hours and week. Thermal pain threshold was found to be significantly higher in males. A significant poor to moderate correlation was found between the Pain Rating Index (PRI) in the sensory category of the MPQ and ULTT2b scores (r = .353, p = .038). There was no other significant correlation between MPQ and QST data. Pain free grip strength was poorly yet significantly correlated with duration of pathology (r = 318, p = .038). Conclusion: The findings of this study are in agreement with others (Melzack and Katz, 1994) regarding the multidimensional nature of pain, in a condition conventionally conceived as a musculoskeletal pain state. The findings also suggest that utilisation of only one pain measurement tool is unlikely to provide a thorough clinical picture of pain experienced with chronic lateral epicondylalgia.
Resumo:
The infrapatellar fat pad has been implicated as a possible source of anterior knee pain. This study examined the nature, distribution and time-course of experimentally induced pain in the infrapatellar fat pad. Hypertonic saline (5%) was injected into the medial fat pad of 11 healthy individuals with no history of knee pain. Severity of pain was assessed at rest and during activity using an 11 point numerical rating scale (NRS) at regular intervals over 15-30 min following injection. Participants described the size of the pain region from a series of different sized circles while the area and type of pain was established from a body chart and the McGill pain questionnaire. The effect of pain on temperature-pain threshold and sensory thresholds of the anterior knee was assessed. Participants generally reported a deep aching pain that peaked in severity around 3 min and gradually declined over 15 min. Pain levels were not altered by clinical manoeuvres designed to impinge the fat pad. The size of the pain region was related to pain intensity. Pain was most commonly felt in the region of the fat pad medial to the patella, although some individuals reported proximal referred pain as far as the groin region. Thermal and sensory thresholds were not altered at a region close to the injection site during the experimental pain. These results suggest that nociceptive stimulation of the infrapatellar fat pad may cause anterior knee pain that is not necessarily confined locally particularly if pain is severe. This has implications for the investigation of pathological structures in patients presenting clinically with anterior knee pain and provides an experimental model of anterior knee pain. (C) 2003 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Hydrogen is being seen as an alternative energy carrier to conventional hydrocarbons to reduce greenhouse gas emissions. High efficiency separation technologies to remove hydrogen from the greenhouse gas, carbon dioxide, are therefore in growing demand. Traditional thermodynamic separation systems utilise distillation, absorption and adsorption, but are limited in efficiency at compact scales. Molecular sieve silica (MSS) membranes can perform this separation as they have high permselectivity of hydrogen to carbon dioxide, but their stability under thermal cycling is not well reported. In this work we exposed a standard MSS membrane and a carbonised template MSS (CTMSS) membrane to thermal cycling from 100 to 450°C. The standard MSS and carbonised template CTMSS membranes both showed permselectivity of helium to nitrogen dropping from around 10 to 6 in the first set of cycles, remaining stable until the last test. The permselectivity drop was due to small micropore collapse, which occurred via structure movement during cycling. Simulating single stage membrane separation with a 50:50 molar feed of H2:CO2, H2 exiting the permeate stream would start at 79% and stabilise at 67%. Higher selectivity membranes showed less of a purity drop, indicating the margin at which to design a stable membrane separation unit for CO2 capture.
Resumo:
A simplified model for anisotropic mantle convection based on a novel class of rheologies, originally developed for folding instabilities in multilayered rock (MUHLHAUS et al., 2002), is extended ¨ through the introduction of a thermal anisotropy dependent on the local layering. To examine the effect of the thermal anisotropy on the evolution of mantle material, a parallel implementation of this model was undertaken using the Escript modelling toolkit and the Finley finite-element computational kernel (DAVIES et al., 2004). For the cases studied, there appears too little if any effect. For comparative purposes, the effects of anisotropic shear viscosity and the introduced thermal anisotropy are also presented. These results contribute to the characterization of viscous anisotropic mantle convection subject to variation in thermal conductivities and shear viscosities.
Resumo:
We report on a quantitative study of the growth process of 87Rb Bose-Einstein condensates. By continuous evaporative cooling we directly control the thermal cloud from which the condensate grows. We compare the experimental data with the results of a theoretical model based on quantum kinetic theory. We find quantitative agreement with theory for the situation of strong cooling, whereas in the weak cooling regime a distinctly different behavior is found in the experiment.
Resumo:
Centuries after Locke asserted the importance of memory to identity, Freudian psychology argued that what was forgotten was of equal importance as to what was remembered. The closing decades of the nineteenth century saw a rising interest in the nature of forgetting, resulting in a reassessment and newfound distrust of the long revered faculty of memory. The relationship between memory and identity was inverted, seeing forgetting also become a means for forging identity. This newfound distrust of memory manifested in the writings of Nietzsche who in 1874 called for society to learn to feel unhistorically and distance itself from the past - in what was essentially tantamount to a cultural forgetting. Following the Nietzschean call, the architecture of Modernism was also compelled by the need to 'overcome' the limits imposed by history. This paper examines notions of identity through the shifting boundaries of remembering and forgetting, with particular reference to the construction of Brazilian identity through the ‘repression’ of history and memory in the design of the Brazilian capital. Designed as a forward-looking modernist utopia, transcending the limits imposed by the country's colonial heritage, the design for Brasilia exploited the anti-historicist agenda of modernism to emancipate the country from cultural and political associations with the Portuguese Empire. This paper examines the relationship between place, memory and forgetting through a discussion of the design for Brasilia.
Resumo:
Molecular dynamics simulations of carbon atom depositions are used to investigate energy diffusion from the impact zone. A modified Stillinger-Weber potential models the carbon interactions for both sp2 and sp3 bonding. Simulations were performed on 50 eV carbon atom depositions onto the (111) surface of a 3.8 x 3.4 x 1.0 nm diamond slab containing 2816 atoms in 11 layers of 256 atoms each. The bottom layer was thermostated to 300 K. At every 100th simulation time step (27 fs), the average local kinetic energy, and hence local temperature, is calculated. To do this the substrate is divided into a set of 15 concentric hemispherical zones, each of thickness one atomic diameter (0.14 nm) and centered on the impact point. A 50-eV incident atom heats the local impact zone above 10 000 K. After the initial large transient (200 fs) the impact zone has cooled below 3000 K, then near 1000 K by 1 ps. Thereafter the temperature profile decays approximately as described by diffusion theory, perturbed by atomic scale fluctuations. A continuum model of classical energy transfer is provided by the traditional thermal diffusion equation. The results show that continuum diffusion theory describes well energy diffusion in low energy atomic deposition processes, at distance and time scales larger than 1.5 nm and 1-2 ps, beyond which the energy decays essentially exponentially. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
The gamma-radiolysis of poly(tetrafluoroethylene-co-perfluoromethyl vinyl ether) (TFE/PMVE) was investigated using chemical and mechanical analyses. The polymer was found to form an insoluble network with a dose of gelation of 15.8 kGy. Tensile and glass transition temperature measurements indicated the predominance of crosslinking, with optimal elastomeric properties reached in the dose range of 120 to 200 kGy. Photoacoustic FTIR spectroscopy CPAS) showed the formation of new carboxylic acid end groups on irradiation. These new end groups were shown to decrease the thermal oxidative stability of the crosslinked network as determined by thermal gravimetric analysis. Electron spin resonance (ESR) studies of the polymer at 77 K indicated the presence of radical precursors. A G-value of 1.1 was determined for radical production at 77 K. Comparison of radical concentrations for a copolymer with a different mole ratio of PMVE, indicated that the PMVE units contribute to scission reactions. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
We present a numerical methodology for the study of convective pore-fluid, thermal and mass flow in fluid-saturated porous rock basins. lit particular, we investigate the occurrence and distribution pattern of temperature gradient driven convective pore-fluid flow and hydrocarbon transport in the Australian North West Shelf basin. The related numerical results have demonstrated that: (1) The finite element method combined with the progressive asymptotic approach procedure is a useful tool for dealing with temperature gradient driven pore-fluid flow and mass transport in fluid-saturated hydrothermal basins; (2) Convective pore-fluid flow generally becomes focused in more permeable layers, especially when the layers are thick enough to accommodate the appropriate convective cells; (3) Large dislocation of strata has a significant influence off the distribution patterns of convective pore;fluid flow, thermal flow and hydrocarbon transport in the North West Shelf basin; (4) As a direct consequence of the formation of convective pore-fluid cells, the hydrocarbon concentration is highly localized in the range bounded by two major faults in the basin.
Resumo:
Previous analyses of thermal acclimation of locomotor performance in amphibians have only examined the adult life history stage and indicate that the locomotor system is unable to undergo acclimatory changes to temperature. In this study, we examined the ability of tadpoles of the striped marsh frog (Limnodynastes peronii) to acclimate their locomotor system by exposing them to either 10 degrees C or 24 degrees C for 6 weeks and testing their burst swimming performance at 10, 24, and 34 degrees C. At the test temperature of 10 degrees C, maximum velocity (U-max) of the 10 degrees C-acclimated tadpoles was 47% greater and maximum acceleration (A(max)) 53% greater than the 24 degrees C-acclimated animals. At 24 degrees C, U-max was 16% greater in the 10 degrees C-acclimation group, while there was no significant difference in A(max) or the time taken to reach U-max (T-U-max). At 34 degrees C, there was no difference between the acclimation groups in either U-max or A(max), however T-U-max was 36% faster in the 24 degrees C-acclimation group. This is the first study to report an amphibian (larva or adult) possessing the capacity to compensate for cool temperatures by thermal acclimation of locomotor performance. To determine whether acclimation period affected the magnitude of the acclimatory response, we also acclimated tadpoles of L. peronii to 10 degrees C for 8 months and compared their swimming performance with tadpoles acclimated to 10 degrees C for 6 weeks. At the test temperatures of 24 degrees C and 34 degrees C, U-max and A(max) were significantly slower in the tadpoles acclimated to 10 degrees C for 8 months. At 10 degrees C, T-U-max was 40% faster in the 8-month group, while there were no differences in either U-max or A(max). Although locomotor performance was enhanced at 10 degrees C by a longer acclimation period, this was at the expense of performance at higher temperatures.