5 resultados para Theoretical prediction

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wolbachia is an endosymbiont of diverse arthropod lineages that can induce various alterations of host reproduction for its own benefice. Cytoplasmic incompatibility (CI) is the most common phenomenon, which results in embryonic lethality when males that bear Wolbachia are mated with females that do not. In the cherry fruit fly, Rhagoletis cerasi, Wolbachia seems to be responsible for previously reported patterns of incompatibility between populations. Here we report on the artificial transfer of two Wolbachia variants (wCer1 and wCer2) from R. cerasi into Drosophila simulans, which was performed with two major goals in mind: first, to isolate wCer1 from wCer2 in order to individually test their respective abilities to induce Cl in the new host; and, second, to test the theoretical prediction that recent Wolbachia-host associations should be characterized by high levels of CI, fitness costs to the new host, and inefficient transmission from mothers to offspring. wCer1 was unable to develop in the new host, resulting in its rapid loss after successful injection, while wCer2 was established in the new host. Transmission rates of wCer2 were low, and the infection showed negative fitness effects, consistent with our prediction, but CI levels were unexpectedly lower in the new host. Based on these parameter estimates, neither wCer1 nor wCer2 could be naturally maintained in D. simulans. The experiment thus suggests that natural Wolbachia transfer between species might be restricted by many factors, should the ecological barriers be bypassed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the results of the prediction of the high-pressure adsorption equilibrium of supercritical. gases (Ar, N-2, CH4, and CO2) on various activated carbons (BPL, PCB, and Norit R1 extra) at various temperatures using a density-functional-theory-based finite wall thickness (FWT) model. Pore size distribution results of the carbons are taken from our recent previous work 1,2 using this approach for characterization. To validate the model, isotherms calculated from the density functional theory (DFT) approach are comprehensively verified against those determined by grand canonical Monte Carlo (GCMC) simulation, before the theoretical adsorption isotherms of these investigated carbons calculated by the model are compared with the experimental adsorption measurements of the carbons. We illustrate the accuracy and consistency of the FWT model for the prediction of adsorption isotherms of the all investigated gases. The pore network connectivity problem occurring in the examined carbons is also discussed, and on the basis of the success of the predictions assuming a similar pore size distribution for accessible and inaccessible regions, it is suggested that this is largely related to the disordered nature of the carbon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scorpion toxins are common experimental tools for studies of biochemical and pharmacological properties of ion channels. The number of functionally annotated scorpion toxins is steadily growing, but the number of identified toxin sequences is increasing at much faster pace. With an estimated 100,000 different variants, bioinformatic analysis of scorpion toxins is becoming a necessary tool for their systematic functional analysis. Here, we report a bioinformatics-driven system involving scorpion toxin structural classification, functional annotation, database technology, sequence comparison, nearest neighbour analysis, and decision rules which produces highly accurate predictions of scorpion toxin functional properties. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Determination of the subcellular location of a protein is essential to understanding its biochemical function. This information can provide insight into the function of hypothetical or novel proteins. These data are difficult to obtain experimentally but have become especially important since many whole genome sequencing projects have been finished and many resulting protein sequences are still lacking detailed functional information. In order to address this paucity of data, many computational prediction methods have been developed. However, these methods have varying levels of accuracy and perform differently based on the sequences that are presented to the underlying algorithm. It is therefore useful to compare these methods and monitor their performance. Results: In order to perform a comprehensive survey of prediction methods, we selected only methods that accepted large batches of protein sequences, were publicly available, and were able to predict localization to at least nine of the major subcellular locations (nucleus, cytosol, mitochondrion, extracellular region, plasma membrane, Golgi apparatus, endoplasmic reticulum (ER), peroxisome, and lysosome). The selected methods were CELLO, MultiLoc, Proteome Analyst, pTarget and WoLF PSORT. These methods were evaluated using 3763 mouse proteins from SwissProt that represent the source of the training sets used in development of the individual methods. In addition, an independent evaluation set of 2145 mouse proteins from LOCATE with a bias towards the subcellular localization underrepresented in SwissProt was used. The sensitivity and specificity were calculated for each method and compared to a theoretical value based on what might be observed by random chance. Conclusion: No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application to hypothetical proteins. All methods showed lower performance on the LOCATE dataset and variable performance on individual subcellular localizations was observed. Proteins localized to the secretory pathway were the most difficult to predict, while nuclear and extracellular proteins were predicted with the highest sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rail corrugation consists of undesirable periodic fluctuations in wear on railway track and costs the railway industry substantially for it's removal by regrinding. Much research has been performed on this problem, particularly over the past two decades, however, a reliable cure remains elusive for wear-type corrugations. Recently the growth behaviour of wear-type rail corrugation-has been investigated using theoretical and experimental models as part of the RailCRC Project (#18). A critical part of this work is the tuning and validation of these models via an extensive field testing program. Rail corrugations have been monitored for 2 years on sites throughout Australia. Measured rail surface profiles are used to determine corrugation growth rates on each site. Growth rates and other characteristics are compared with theoretical predictions from a computer model for validation. The results from several pertinent sites are presented and discussed.