7 resultados para Thematic Mapper Images
em University of Queensland eSpace - Australia
Resumo:
Remote sensing, as a direct adjunct to field, lithologic and structural mapping, and more recently, GIS have played an important role in the study of mineralized areas. A review on the application of remote sensing in mineral resource mapping is attempted here. It involves understanding the application of remote sensing in lithologic, structural and alteration mapping. Remote sensing becomes an important tool for locating mineral deposits, in its own right, when the primary and secondary processes of mineralization result in the formation of spectral anomalies. Reconnaissance lithologic mapping is usually the first step of mineral resource mapping. This is complimented with structural mapping, as mineral deposits usually occur along or adjacent to geologic structures, and alteration mapping, as mineral deposits are commonly associated with hydrothermal alteration of the surrounding rocks. In addition to these, understanding the use of hyperspectral remote sensing is crucial as hyperspectral data can help identify and thematically map regions of exploration interest by using the distinct absorption features of most minerals. Finally coming to the exploration stage, GIS forms the perfect tool in integrating and analyzing various georeferenced geoscience data in selecting the best sites of mineral deposits or rather good candidates for further exploration.
Resumo:
In this paper we proposed a composite depth of penetration (DOP) approach to excluding bottom reflectance in mapping water quality parameters from Landsat thematic mapper (TM) data in the shallow coastal zone of Moreton Bay, Queensland, Australia. Three DOPs were calculated from TM1, TM2 and TM3, in conjunction with bathymetric data, at an accuracy ranging from +/-5% to +/-23%. These depths were used to segment the image into four DOP zones. Sixteen in situ water samples were collected concurrently with the recording of the satellite image. These samples were used to establish regression models for total suspended sediment (TSS) concentration and Secchi depth with respect to a particular DOP zone. Containing identical bands and their transformations for both parameters, the models are linear for TSS concentration, logarithmic for Secchi depth. Based on these models, TSS concentration and Secchi depth were mapped from the satellite image in respective DOP zones. Their mapped patterns are consistent with the in situ observed ones. Spatially, overestimation and underestimation of the parameters are restricted to localised areas but related to the absolute value of the parameters. The mapping was accomplished more accurately using multiple DOP zones than using a single zone in shallower areas. The composite DOP approach enables the mapping to be extended to areas as shallow as <3 m. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We address the practical issue of using thermal image data without adjustment or calibration for projects which do not require actual temperatures per se. Large scale airborne scanning in the thermal band at 8.5–13 μm was obtained for a mangrove and salt marsh in subtropical eastern Australia. For open sites, the raw image values were strongly positively correlated with ground level temperatures. For sites under mangrove canopy cover, image values indicated temperatures 2–4°C lower than those measured on the ground. The raw image was useful in identifying water bodies under canopy and has the potential for locating channel lines of deeper water. This could facilitate modification to increase flushing in the system, thereby reducing mosquito larval survival.
Resumo:
Sustainable management of coastal and coral reef environments requires regular collection of accurate information on recognized ecosystem health indicators. Satellite image data and derived maps of water column and substrate biophysical properties provide an opportunity to develop baseline mapping and monitoring programs for coastal and coral reef ecosystem health indicators. A significant challenge for satellite image data in coastal and coral reef water bodies is the mixture of both clear and turbid waters. A new approach is presented in this paper to enable production of water quality and substrate cover type maps, linked to a field based coastal ecosystem health indicator monitoring program, for use in turbid to clear coastal and coral reef waters. An optimized optical domain method was applied to map selected water quality (Secchi depth, Kd PAR, tripton, CDOM) and substrate cover type (seagrass, algae, sand) parameters. The approach is demonstrated using commercially available Landsat 7 Enhanced Thematic Mapper image data over a coastal embayment exhibiting the range of substrate cover types and water quality conditions commonly found in sub-tropical and tropical coastal environments. Spatially extensive and quantitative maps of selected water quality and substrate cover parameters were produced for the study site. These map products were refined by interactions with management agencies to suit the information requirements of their monitoring and management programs. (c) 2004 Elsevier Ltd. All rights reserved.