3 resultados para Textile industry.

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The successful restructuring of Chinese industries is of immense importance not only for the continued development of China but also to the stability of the world economy. The transformation of the Chinese wool textile industry illustrates well the many problems and pressures currently facing most Chinese industries. The Chinese wool textile industry has undergone major upheaval and restructuring in its drive to modernize and take advantage of developments in world textile markets. Macro level ownership and administrative reforms are well advanced as is the uptake of new technology and equipment. However, the changing market and institutional environment also demands an increasing level of sophistication in mill management decisions including product selection, input procurement, product pricing, investment appraisal, cost analysis and proactive identification of new market and growth opportunities. This paper outlines a series of analyses that have been integrated into a decision-making model designed to assist mill managers with these decisions. Features of the model include a whole-of-mill approach, a design based on existing mill structures and information systems, and the capacity for the model to be tailored to individual mills. All of these features facilitate the adoption of the model by time and resource constrained managers seeking to maintain the viability of their enterprises in the face of extremely dynamic market conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The integrated chemical-biological degradation combining advanced oxidation by UV/H2O2 followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H2O2/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required. (c) 2006 Elsevier B.V. All rights reserved.