16 resultados para Teste incremental
em University of Queensland eSpace - Australia
Resumo:
Background-Although assessment of myocardial perfusion by myocardial contrast echocardiography (MCE) is feasible, its incremental benefit to stress echocardiography is not well defined. We examined whether the addition of MCE to combined dipyridamole-exercise echocardiography (DExE) provides incremental benefit for evaluation of coronary artery disease (CAD). Methods and Results-MCE was combined with DExE in 85 patients, 70 of whom were undergoing quantitative coronary angiography and 15 patients with a low probability of CAD. MCE was acquired by low-mechanical-index imaging in 3 apical views after acquisition of standard resting and poststress images. Wall motion, left ventricular opacification, and MCE components of the study were interpreted sequentially, blinded to other data. Significant (>50%) stenoses were present in 43 patients and involved 69 coronary territories. The addition of qualitative MCE improved sensitivity for the detection of CAD (91% versus 74%, P=0.02) and accurate recognition of disease extent (87% versus 65% of territories, P=0.003), with a nonsignificant reduction in specificity. Conclusions-The addition of low-mechanical-index MCE to standard imaging during DExE improves detection of CAD and enables a more accurate determination of disease extent.
Resumo:
Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batchmode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995-1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n = 692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD < 1 day (Prop(MAD < 1)). The significance of the comparison is assessed through a regression analysis. Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD = 1.77 days and Prop(MAD < 1) = 54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p-value = 0.063) and a significant (p-value = 0.044) increase of Prop(MAD
Resumo:
Aims Technological advances in cardiac imaging have led to dramatic increases in test utilization and consumption of a growing proportion of cardiovascular healthcare costs. The opportunity costs of strategies favouring exercise echocardiography or SPECT imaging have been incompletely evaluated. Methods and results We examined prognosis and cost-effectiveness of exercise echocardiography (n=4884) vs. SPECT (n=4637) imaging in stable, intermediate risk, chest pain patients. Ischaemia extent was defined as the number of vascular territories with echocardiographic wall motion or SPECT perfusion abnormalities. Cox proportional hazard models were employed to assess time to cardiac death or myocardial infarction (MI). Total cardiovascular costs were summed (discounted and inflation-corrected) throughout follow-up. A cost-effectiveness ratio = 2% annual event risk), SPECT ischaemia was associated with earlier and greater utilization of coronary revascularization (P < 0.0001) resulting in an incremental cost-effectiveness ratio of $32 381/LYS. Conclusion Health care policies aimed at allocating limited resources can be effectively guided by applying clinical and economic outcomes evidence. A strategy aimed at cost-effective testing would support using echocardiography in low-risk patients with suspected coronary disease, whereas those higher risk patients benefit from referral to SPECT imaging.
Resumo:
In this article, we propose a framework, namely, Prediction-Learning-Distillation (PLD) for interactive document classification and distilling misclassified documents. Whenever a user points out misclassified documents, the PLD learns from the mistakes and identifies the same mistakes from all other classified documents. The PLD then enforces this learning for future classifications. If the classifier fails to accept relevant documents or reject irrelevant documents on certain categories, then PLD will assign those documents as new positive/negative training instances. The classifier can then strengthen its weakness by learning from these new training instances. Our experiments’ results have demonstrated that the proposed algorithm can learn from user-identified misclassified documents, and then distil the rest successfully.
Resumo:
Background. Stress myocardial contrast echo (MCE) is technically challenging with exercise (Ex) because of cardiacmovementandshort duration ofhyperemia.Vasodilators solve these limitations, but are less potent for inducing abnormal wall motion (WM). We sought whether a combined dipyridamole (DI; 0.56 mg/kg i.v. 4 min) and Ex stress protocol would enable MCE to provide incremental benefit toWManalysis for detection of CAD. Methods. Standard echo images were followed by real time MCE at rest and following stress in 85 pts, 70 undergoing quantitative coronary angiography and 15 low risk pts.WMAfrom standard and LVopacification images, and then myocardial perfusion were assessed sequentially in a blinded fashion. A subgroup of 13 pts also underwent Ex alone, to assess the contribution of DI to quantitative myocardial flow reserve (MFR). Results. Significant (>50%) stenoses were present in 43 pts, involving 69 territories. Addition of MCE improved SE sensitivity for detection of CAD (91% versus 74%, P = 0.02) and better appreciation of disease extent (87% versus 65%territories, P=0.003), with a non-significant reduction in specificity. In 55 territories subtended by a significant stenosis, but with no resting WM abnormality, ability to identify ischemia was also significantly increased by MCE (82% versus 60%, P = 0.002). MFR was less with Ex alone than with DIEx stress (2.4 ± 1.6 versus 4.0 ± 1.9, P = 0.05), suggesting prolongation of hyperaemia with DI may be essential to the results. Conclusions. Dipyridamole-exercise MCE adds significant incremental benefit to standard SE, with improved diagnostic sensitivity and more accurate estimation of extent of CAD.
Resumo:
Model transformations are an integral part of model-driven development. Incremental updates are a key execution scenario for transformations in model-based systems, and are especially important for the evolution of such systems. This paper presents a strategy for the incremental maintenance of declarative, rule-based transformation executions. The strategy involves recording dependencies of the transformation execution on information from source models and from the transformation definition. Changes to the source models or the transformation itself can then be directly mapped to their effects on transformation execution, allowing changes to target models to be computed efficiently. This particular approach has many benefits. It supports changes to both source models and transformation definitions, it can be applied to incomplete transformation executions, and a priori knowledge of volatility can be used to further increase the efficiency of change propagation.
Resumo:
As an alternative to traditional evolutionary algorithms (EAs), population-based incremental learning (PBIL) maintains a probabilistic model of the best individual(s). Originally, PBIL was applied in binary search spaces. Recently, some work has been done to extend it to continuous spaces. In this paper, we review two such extensions of PBIL. An improved version of the PBIL based on Gaussian model is proposed that combines two main features: a new updating rule that takes into account all the individuals and their fitness values and a self-adaptive learning rate parameter. Furthermore, a new continuous PBIL employing a histogram probabilistic model is proposed. Some experiments results are presented that highlight the features of the new algorithms.
Resumo:
Data refinements are refinement steps in which a program’s local data structures are changed. Data refinement proof obligations require the software designer to find an abstraction relation that relates the states of the original and new program. In this paper we describe an algorithm that helps a designer find an abstraction relation for a proposed refinement. Given sufficient time and space, the algorithm can find a minimal abstraction relation, and thus show that the refinement holds. As it executes, the algorithm displays mappings that cannot be in any abstraction relation. When the algorithm is not given sufficient resources to terminate, these mappings can help the designer find a suitable abstraction relation. The same algorithm can be used to test an abstraction relation supplied by the designer.