4 resultados para Ternary complex
em University of Queensland eSpace - Australia
Resumo:
Based on phage display optimization studies with human growth hormone (GH), it is thought that the biopotency of GH cannot be increased. This is proposed to be a result of the affinity of the first receptor for hormone far exceeding that which is required to trap the hormone long enough to allow diffusion of the second receptor to form the ternary complex, which initiates signaling. We report here that despite similar site 1 kinetics to the hGH/hGH receptor interaction, the potency of porcine GH for its receptor can be increased up to 5-fold by substituting hGH residues involved in site 1 binding into pGH. Based on extensive mutations and BIAcore studies, we show that the higher potency and site 1 affinity of hGH for the pGHR is primarily a result of a decreased off-rate associated with residues in the extended loop between helices 1 and 2 that interact with the two key tryptophans Trp(104) and Trp(169) in the receptor binding hot spot. Our mutagenic analysis has also identified a second determinant (Lys(165)), which in addition to His(169), restricts the ability of non-primate hormones to activate hGH receptor. The increased biopotency of GH that we observe can be explained by a model for GH receptor activation where subunit alignment is critical for effective signaling.
Resumo:
Significant new insights into the interactions of the potent insulin-enhancing compound bis(maltolato)oxovanadium(IV) (BMOV) with the serum proteins, apo-transferrin and albumin, are presented. Identical reaction products are observed by electron paramagnetic resonance (EPR) with either BMOV or vanadyl sulfate (VOSO4) in solutions of human serum apo-transferrin. Further detailed study rules out the presence of a ternary ligand-vanadyl-transferrin complex proposed previously. By contrast, differences in reaction products are observed for the interactions of BMOV and VOSO4 with human serum albumin (HSA), wherein adduct formation between albumin and BMOV is detected. In BMOV-albumin solutions, vanadyl ions are bound in a unique manner not observed in comparable solutions Of VOSO4 and albumin. Presentation of chelated vanadyl ions precludes binding at the numerous nonspecific sites and produces a unique EPR spectrum which is assigned to a BMOV-HSA adduct. The adduct species cannot be produced, however, from a solution Of VOSO4 and HSA titrated with maltol. Addition of maltol to a VOSO4-HSA solution instead results in formation of a different end product which has been assigned as a ternary complex, VO(ma)(HSA). Furthermore, analysis of solution equilibria using a model system of BMOV with 1-methylimidazole (formation constant log K = 4.5(1), by difference electronic absorption spectroscopy) lends support to an adduct binding mode (VO(ma)(2)-HSA) proposed herein for BMOV and HSA. This detailed report of an in vitro reactivity difference between VOSO4 and BMOV may have bearing on the form of active vanadium metabolites delivered to target tissues. Albumin binding of vanadium chelates is seen to have a potentially dramatic effect on pharmacokinetics, transport, and efficacy of these antidiabetic chelates.
Spectroscopic characterization of copper(II) binding to the immunosuppressive drug mycophenolic acid
Resumo:
Mycophenolic acid (MPA) is a drug that has found widespread use as an immunosuppressive agent which limits rejection of transplanted organs. Optimal use of this drug is hampered by gastrointestinal side effects which can range in severity. One mechanism by which MPA causes gastropathy may involve a direct interaction between the drug and gastric phospholipids. To combat this interaction we have investigated the potential of MPA to coordinate Cu(II), a metal which has been used to inhibit gastropathy associated with use of the NSAID indomethacin. Using a range of spectroscopic techniques we show that Cu(II) is coordinated to two MPA molecules via carboxylates and, at low pH, water ligands. The copper complex formed is stable in solution as assessed by mass spectrometry and H-1 NMR diffusion experiments. Competition studies with glycine and albumin indicate that the copper-MPA complex will release Cu(II) to amino acids and proteins thereby allowing free MPA to be transported to its site of action. Transfer to serum albumin proceeds via a Cu(MPA)(albumin) ternary complex. These results raise the possibility that copper complexes of MPA may be useful in a therapeutic situation.
Resumo:
Pseudo-ternary diagrams for Quil A, phospholipid (phosphatidylcholine (PC) or phosphatidylethanolamine (PE)) and cholesterol were established in order to identify combinations that result in the formation of immune-stimulating complex (ISCOM) matrices and other colloidal structures produced by these three components in aqueous systems following lipid-film hydration or dialysis (methods that can be used to produce ISCOMs). In addition, the effect of equilibration time (1 month at 4degreesC) on the structures formed by the various combinations of the three components was investigated. Depending on the ratio of Quil A, cholesterol and phospholipid, different colloidal particles, including ISCOM matrices, liposomes and ring-like micelles, were found irrespective of the preparation method used. In contrast, worm-like micelles were only observed in systems prepared by lipid-film hydration. For samples prepared by dialysis, ISCOM matrices were predominantly found near the Quil A apex of the pseudo-ternary diagram (> 50% Quil A). On the other hand, for samples prepared by lipid-film hydration, ISCOM matrices were predominantly found near the phospholipid apex of the pseudo-ternary diagram (> 50% phospholipid). The regions in the pseudo-ternary diagrams in which ISCOM matrices were observed increased following an extended equilibration time, particularly for samples prepared by lipid-film hydration. Differences were also observed between pseudoternary diagrams prepared using either PE or PC as phospholipids.