12 resultados para Temporal information
em University of Queensland eSpace - Australia
Resumo:
Evolutionary change results from selection acting on genetic variation. For migration to be successful, many different aspects of an animal's physiology and behaviour need to function in a co-coordinated way. Changes in one migratory trait are therefore likely to be accompanied by changes in other migratory and life-history traits. At present, we have some knowledge of the pressures that operate at the various stages of migration, but we know very little about the extent of genetic variation in various aspects of the migratory syndrome. As a consequence, our ability to predict which species is capable of what kind of evolutionary change, and at which rate, is limited. Here, we review how our evolutionary understanding of migration may benefit from taking a quantitative-genetic approach and present a framework for studying the causes of phenotypic variation. We review past research, that has mainly studied single migratory traits in captive birds, and discuss how this work could be extended to study genetic variation in the wild and to account for genetic correlations and correlated selection. In the future, reaction-norm approaches may become very important, as they allow the study of genetic and environmental effects on phenotypic expression within a single framework, as well as of their interactions. We advocate making more use of repeated measurements on single individuals to study the causes of among-individual variation in the wild, as they are easier to obtain than data on relatives and can provide valuable information for identifying and selecting traits. This approach will be particularly informative if it involves systematic testing of individuals under different environmental conditions. We propose extending this research agenda by using optimality models to predict levels of variation and covariation among traits and constraints. This may help us to select traits in which we might expect genetic variation, and to identify the most informative environmental axes. We also recommend an expansion of the passerine model, as this model does not apply to birds, like geese, where cultural transmission of spatio-temporal information is an important determinant of migration patterns and their variation.
Resumo:
In broader catchment scale investigations, there is a need to understand and ultimately exploit the spatial variation of agricultural crops for an improved economic return. In many instances, this spatial variation is temporally unstable and may be different for various crop attributes and crop species. In the Australian sugar industry, the opportunity arose to evaluate the performance of 231 farms in the Tully Mill area in far north Queensland using production information on cane yield (t/ha) and CCS ( a fresh weight measure of sucrose content in the cane) accumulated over a 12-year period. Such an arrangement of data can be expressed as a 3-way array where a farm x attribute x year matrix can be evaluated and interactions considered. Two multivariate techniques, the 3-way mixture method of clustering and the 3-mode principal component analysis, were employed to identify meaningful relationships between farms that performed similarly for both cane yield and CCS. In this context, farm has a spatial component and the aim of this analysis was to determine if systematic patterns in farm performance expressed by cane yield and CCS persisted over time. There was no spatial relationship between cane yield and CCS. However, the analysis revealed that the relationship between farms was remarkably stable from one year to the next for both attributes and there was some spatial aggregation of farm performance in parts of the mill area. This finding is important, since temporally consistent spatial variation may be exploited to improve regional production. Alternatively, the putative causes of the spatial variation may be explored to enhance the understanding of sugarcane production in the wet tropics of Australia.
Resumo:
Two experiments were conducted to examine whether the conclusions drawn regarding the timing of anticipatory information pick-up from temporal occlusion studies are influenced by whether (a) the viewing period is of variable or fixed duration and (b) the task is a laboratory-based one with simple responses or a natural one requiring a coupled, interceptive movement response. Skilled and novice tennis players either made pencil-and-paper predictions of service direction (Experiment 1) or attempted to hit return strokes (Experiment 2) to tennis serves while their vision was temporally occluded in either a traditional progressive mode (where more information was revealed in each subsequent occlusion condition) or a moving window mode (where the visual display was only available for a fixed duration with this window shifted to different phases of the service action). Conclusions regarding the timing of information pick-up were generally consistent across display mode and across task setting lending support to the veracity and generalisability of findings regarding perceptual expertise in existing laboratory-based progressive temporal occlusion studies.
Resumo:
Recognising the laterality of a pictured hand involves making an initial decision and confirming that choice by mentally moving one's own hand to match the picture. This depends on an intact body schema. Because patients with complex regional pain syndrome type 1 (CRPS1) take longer to recognise a hand's laterality when it corresponds to their affected hand, it has been proposed that nociceptive input disrupts the body schema. However, chronic pain is associated with physiological and psychosocial complexities that may also explain the results. In three studies, we investigated whether the effect is simply due to nociceptive input. Study one evaluated the temporal and perceptual characteristics of acute hand pain elicited by intramuscular injection of hypertonic saline into the thenar eminence. In studies two and three, subjects performed a hand laterality recognition task before, during, and after acute experimental hand pain, and experimental elbow pain, respectively. During hand pain and during elbow pain, when the laterality of the pictured hand corresponded to the painful side, there was no effect on response time (RT). That suggests that nociceptive input alone is not sufficient to disrupt the working body schema. Conversely to patients with CRPS1, when the laterality of the pictured hand corresponded to the non-painful hand, RT increased similar to 380 ms (95% confidence interval 190 ms-590 ms). The results highlight the differences between acute and chronic pain and may reflect a bias in information processing in acute pain toward the affected part.
Resumo:
Geospatio-temporal conceptual models provide a mechanism to explicitly represent geospatial and temporal aspects of applications. Such models, which focus on both what and when/where, need to be more expressive than conventional conceptual models (e.g., the ER model), which primarily focus on what is important for a given application. In this study, we view conceptual schema comprehension of geospatio-temporal data semantics in terms of matching the external problem representation (that is, the conceptual schema) to the problem-solving task (that is, syntactic and semantic comprehension tasks), an argument based on the theory of cognitive fit. Our theory suggests that an external problem representation that matches the problem solver's internal task representation will enhance performance, for example, in comprehending such schemas. To assess performance on geospatio-temporal schema comprehension tasks, we conducted a laboratory experiment using two semantically identical conceptual schemas, one of which mapped closely to the internal task representation while the other did not. As expected, we found that the geospatio-temporal conceptual schema that corresponded to the internal representation of the task enhanced the accuracy of schema comprehension; comprehension time was equivalent for both. Cognitive fit between the internal representation of the task and conceptual schemas with geospatio-temporal annotations was, therefore, manifested in accuracy of schema comprehension and not in time for problem solution. Our findings suggest that the annotated schemas facilitate understanding of data semantics represented on the schema.
Resumo:
The authors use experimental surveys to investigate the association between individuals' knowledge of particular wildlife species and their stated willingness to allocate funds to conserve each. The nature of variations in these allocations between species (e.g., their dispersion) as participants' knowledge increases is examined. Factors influencing these changes are suggested. Willingness-to-pay allocations are found not to measure the economic value of species, but are shown to be policy relevant. The results indicate that poorly known species, e.g., in remote areas, may obtain relatively less conservation support than they deserve. (JEL Q51, Q57, Q58)
Resumo:
Pattern discovery in a long temporal event sequence is of great importance in many application domains. Most of the previous work focuses on identifying positive associations among time stamped event types. In this paper, we introduce the problem of defining and discovering negative associations that, as positive rules, may also serve as a source of knowledge discovery. In general, an event-oriented pattern is a pattern that associates with a selected type of event, called a target event. As a counter-part of previous research, we identify patterns that have a negative relationship with the target events. A set of criteria is defined to evaluate the interestingness of patterns associated with such negative relationships. In the process of counting the frequency of a pattern, we propose a new approach, called unique minimal occurrence, which guarantees that the Apriori property holds for all patterns in a long sequence. Based on the interestingness measures, algorithms are proposed to discover potentially interesting patterns for this negative rule problem. Finally, the experiment is made for a real application.
Resumo:
A major task of traditional temporal event sequence mining is to predict the occurrences of a special type of event (called target event) in a long temporal sequence. Our previous work has defined a new type of pattern, called event-oriented pattern, which can potentially predict the target event within a certain period of time. However, in the event-oriented pattern discovery, because the size of interval for prediction is pre-defined, the mining results could be inaccurate and carry misleading information. In this paper, we introduce a new concept, called temporal feature, to rectify this shortcoming. Generally, for any event-oriented pattern discovered under the pre-given size of interval, the temporal feature is the minimal size of interval that makes the pattern interesting. Thus, by further investigating the temporal features of discovered event-oriented patterns, we can refine the knowledge for the target event prediction.
Resumo:
A major task of traditional temporal event sequence mining is to find all frequent event patterns from a long temporal sequence. In many real applications, however, events are often grouped into different types, and not all types are of equal importance. In this paper, we consider the problem of efficient mining of temporal event sequences which lead to an instance of a specific type of event. Temporal constraints are used to ensure sensibility of the mining results. We will first generalise and formalise the problem of event-oriented temporal sequence data mining. After discussing some unique issues in this new problem, we give a set of criteria, which are adapted from traditional data mining techniques, to measure the quality of patterns to be discovered. Finally we present an algorithm to discover potentially interesting patterns.
Resumo:
Pattern discovery in temporal event sequences is of great importance in many application domains, such as telecommunication network fault analysis. In reality, not every type of event has an accurate timestamp. Some of them, defined as inaccurate events may only have an interval as possible time of occurrence. The existence of inaccurate events may cause uncertainty in event ordering. The traditional support model cannot deal with this uncertainty, which would cause some interesting patterns to be missing. A new concept, precise support, is introduced to evaluate the probability of a pattern contained in a sequence. Based on this new metric, we define the uncertainty model and present an algorithm to discover interesting patterns in the sequence database that has one type of inaccurate event. In our model, the number of types of inaccurate events can be extended to k readily, however, at a cost of increasing computational complexity.