8 resultados para Taylor, Maurice
em University of Queensland eSpace - Australia
Resumo:
Numerical experiments using a finite difference method were carried out to determine the motion of axisymmetric Taylor vortices for narrow-gap Taylor vortex flow. When a pressure gradient is imposed on the flow the vortices are observed to move with an axial speed of 1.16 +/- 0.005 times the mean axial flow velocity. The method of Brenner was used to calculate the long-time axial spread of material in the flow. For flows where there is no pressure gradient, the axial dispersion scales with the square root of the molecular diffusion, in agreement with the results of Rosen-bluth et al. for high Peclet number dispersion in spatially periodic flows with a roll structure. When a pressure gradient is imposed the dispersion increases by an amount approximately equal to 6.5 x 10(-4) (W) over bar(2)d(2)/D-m, where (W) over bar is the average axial velocity in the annulus, analogous to Taylor dispersion for laminar flow in an empty tube.
Resumo:
In this paper we discuss implicit Taylor methods for stiff Ito stochastic differential equations. Based on the relationship between Ito stochastic integrals and backward stochastic integrals, we introduce three implicit Taylor methods: the implicit Euler-Taylor method with strong order 0.5, the implicit Milstein-Taylor method with strong order 1.0 and the implicit Taylor method with strong order 1.5. The mean-square stability properties of the implicit Euler-Taylor and Milstein-Taylor methods are much better than those of the corresponding semi-implicit Euler and Milstein methods and these two implicit methods can be used to solve stochastic differential equations which are stiff in both the deterministic and the stochastic components. Numerical results are reported to show the convergence properties and the stability properties of these three implicit Taylor methods. The stability analysis and numerical results show that the implicit Euler-Taylor and Milstein-Taylor methods are very promising methods for stiff stochastic differential equations.