4 resultados para Target normal sheath acceleration
em University of Queensland eSpace - Australia
Resumo:
Although there is good evidence that immunity to the blood stages of malaria parasites can be mediated by different effector components of the adaptive immune system, target antigens for a principal component, effector CD4(+) T cells, have never been defined. We generated CD4+ T cell lines to fractions of native antigens from the blood stages of the rodent parasite, Plasmodium yoelii, and identified fraction-specific T cells that had a Th1 phenotype (producing IL-2, IFN-gamma, and tumor necrosis factor-a, but not IL-4, after antigenic stimulation). These T cells could inhibit parasite growth in recipient severe combined immunodeficient mice. N-terminal sequencing of the fraction showed identity with hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT). Recombinant HGXPRT from the human malaria parasite, Plasmodium falciparum, activated the T cells in vitro, and immunization of normal mice with recombinant HGXPRT reduced parasite growth rates in all mice after challenge.
Resumo:
Primary olfactory neurons situated in the nasal septum project axons within fascicles along a highly stereotypical trajectory en route to the olfactory bulb. The ventral fascicles make a distinct dorsovental turn at the rear of the septum so as to reach the olfactory bulb. In the present study we have used a brain and nasal septum coculture system to examine the role of target tissue on the peripheral trajectory of olfactory sensory axons. In cultures of isolated embryonic nasal septa, olfactory axons form numerous parallel fascicles that project caudally in the submucosa, as they do in vivo. The ventral axon fascicles in the septum, however, often fail to turn, and do not project dorsally towards the roof of the nasal cavity. The presence of olfactory bulb, cortical, or tectal tissue apposed to the caudal end of the septum rescued this phenotype, causing the ventral fascicles to follow a normal in vivo-like trajectory. Ectopic placements of the explants revealed that brain tissue is not tropic for olfactory axons but appears to maintain the peripheral trajectory of growing axons in the nasal septum. Although primary olfactory axons are able to penetrate into olfactory bulb in vitro, they only superficially enter cortical tissue, whereas they do not grow into tectal explants. The ability of axons to differentially grow into different brain regions was shown to be unrelated to the migratory behavior of olfactory ensheathing cells, indicating that olfactory axons are directly responsive to guidance cues in the brain. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Purpose: Despite significant progress in understanding the molecular pathology of pancreatic cancer and its precursor lesion: pancreatic intraepithelial neoplasia (PanIN), there remain no molecules with proven clinical utility as prognostic or therapeutic markers. Here, we used oligonucleotide microarrays to interrogate mRNA expression of pancreatic cancer tissue and normal pancreas to identify novel molecular pathways dysregulated in the development and progression of pancreatic cancer. Experimental Design: RNA was hybridized to Affymetrix Genechip HG-U133 oligonucleotide microarrays. A relational database integrating data from publicly available resources was created to identify candidate genes potentially relevant to pancreatic cancer. The protein expression of one candidate, homeobox B2 (HOXB2), in PanIN and pancreatic cancer was assessed using immunohistochemistry. Results: We identified aberrant expression of several components of the retinoic acid (RA) signaling pathway (RARa, MUC4, Id-1, MMP9, uPAR, HB-EGF, HOXB6, and HOXB2), many of which are known to be aberrantly expressed in pancreatic cancer and Pan IN. HOXB2, a downstream target of RA, was up-regulated 6.7-fold in pancreatic cancer compared with normal pancreas. Immunohistochemistry revealed ectopic expression of HOXB2 in 15% of early Pan IN lesions and 48 of 128 (38%) pancreatic cancer specimens. Expression of HOXB2 was associated with nonresectable tumors and was an independent predictor of poor survival in resected tumors. Conclusions: We identified aberrant expression of RA signaling components in pancreatic cancer, including HOXB2, which was expressed in a proportion of PanIN lesions. Ectopic expression of HOXB2 was associated with a poor prognosis for all patients with pancreatic cancer and was an independent predictor of survival in patients who underwent resection.
Resumo:
AIM: To investigate the presence of surface-active phospholipid (SAPL, or surfactant) in equine tendon and tendon sheath fluid. METHODS: The left front flexor tendon and sheath were removed from five Thoroughbred horses. Phospholipid was extracted from tendon sheath fluid using Folch reagent and quantified using spectroscopy. Transmission electron microscopy (TEM) was used to observe the tendon surfaces. RESULTS: The presence of phospholipid (90.6 (SD 4.3) mu g/ml) in tendon sheath fluid, plus the appearance of oligolamellar layers and lamellar bodies on the tendon surface were indicative of SAPL. CONCLUSIONS: Evidence of SAPL was found in equine tendon, and may have a similar lubricating function as reported for synovial joints. CLINICAL RELEVANCE: These findings may have important implications for normal tendon function and possible therapeutic adjuncts for tendon and tendon sheath injuries.