51 resultados para TSDEAI Semantic-Web Twitter Semantic-Search WordNet LSA
em University of Queensland eSpace - Australia
Resumo:
Refinement in software engineering allows a specification to be developed in stages, with design decisions taken at earlier stages constraining the design at later stages. Refinement in complex data models is difficult due to lack of a way of defining constraints, which can be progressively maintained over increasingly detailed refinements. Category theory provides a way of stating wide scale constraints. These constraints lead to a set of design guidelines, which maintain the wide scale constraints under increasing detail. Previous methods of refinement are essentially local, and the proposed method does not interfere very much with these local methods. The result is particularly applicable to semantic web applications, where ontologies provide systems of more or less abstract constraints on systems, which must be implemented and therefore refined by participating systems. With the approach of this paper, the concept of committing to an ontology carries much more force. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we compare a well-known semantic spacemodel, Latent Semantic Analysis (LSA) with another model, Hyperspace Analogue to Language (HAL) which is widely used in different area, especially in automatic query refinement. We conduct this comparative analysis to prove our hypothesis that with respect to ability of extracting the lexical information from a corpus of text, LSA is quite similar to HAL. We regard HAL and LSA as black boxes. Through a Pearsonrsquos correlation analysis to the outputs of these two black boxes, we conclude that LSA highly co-relates with HAL and thus there is a justification that LSA and HAL can potentially play a similar role in the area of facilitating automatic query refinement. This paper evaluates LSA in a new application area and contributes an effective way to compare different semantic space models.
Resumo:
Client-side caching of spatial data is an important yet very much under investigated issue. Effective caching of vector spatial data has the potential to greatly improve the performance of spatial applications in the Web and wireless environments. In this paper, we study the problem of semantic spatial caching, focusing on effective organization of spatial data and spatial query trimming to take advantage of cached data. Semantic caching for spatial data is a much more complex problem than semantic caching for aspatial data. Several novel ideas are proposed in this paper for spatial applications. A number of typical spatial application scenarios are used to generate spatial query sequences. An extensive experimental performance study is conducted based on these scenarios using real spatial data. We demonstrate a significant performance improvement using our ideas.
Resumo:
Web transaction data between Web visitors and Web functionalities usually convey user task-oriented behavior pattern. Mining such type of click-stream data will lead to capture usage pattern information. Nowadays Web usage mining technique has become one of most widely used methods for Web recommendation, which customizes Web content to user-preferred style. Traditional techniques of Web usage mining, such as Web user session or Web page clustering, association rule and frequent navigational path mining can only discover usage pattern explicitly. They, however, cannot reveal the underlying navigational activities and identify the latent relationships that are associated with the patterns among Web users as well as Web pages. In this work, we propose a Web recommendation framework incorporating Web usage mining technique based on Probabilistic Latent Semantic Analysis (PLSA) model. The main advantages of this method are, not only to discover usage-based access pattern, but also to reveal the underlying latent factor as well. With the discovered user access pattern, we then present user more interested content via collaborative recommendation. To validate the effectiveness of proposed approach, we conduct experiments on real world datasets and make comparisons with some existing traditional techniques. The preliminary experimental results demonstrate the usability of the proposed approach.
Resumo:
In this paper, we present ICICLE (Image ChainNet and Incremental Clustering Engine), a prototype system that we have developed to efficiently and effectively retrieve WWW images based on image semantics. ICICLE has two distinguishing features. First, it employs a novel image representation model called Weight ChainNet to capture the semantics of the image content. A new formula, called list space model, for computing semantic similarities is also introduced. Second, to speed up retrieval, ICICLE employs an incremental clustering mechanism, ICC (Incremental Clustering on ChainNet), to cluster images with similar semantics into the same partition. Each cluster has a summary representative and all clusters' representatives are further summarized into a balanced and full binary tree structure. We conducted an extensive performance study to evaluate ICICLE. Compared with some recently proposed methods, our results show that ICICLE provides better recall and precision. Our clustering technique ICC facilitates speedy retrieval of images without sacrificing recall and precision significantly.
Resumo:
The main aim of the proposed approach presented in this paper is to improve Web information retrieval effectiveness by overcoming the problems associated with a typical keyword matching retrieval system, through the use of concepts and an intelligent fusion of confidence values. By exploiting the conceptual hierarchy of the WordNet (G. Miller, 1995) knowledge base, we show how to effectively encode the conceptual information in a document using the semantic information implied by the words that appear within it. Rather than treating a word as a string made up of a sequence of characters, we consider a word to represent a concept.
Resumo:
This paper explains and explores the concept of "semantic molecules" in the NSM methodology of semantic analysis. A semantic molecule is a complex lexical meaning which functions as an intermediate unit in the structure of other, more complex concepts. The paper undertakes an overview of different kinds of semantic molecule, showing how they enter into more complex meanings and how they themselves can be explicated. It shows that four levels of "nesting" of molecules within molecules are attested, and it argues that while some molecules such as 'hands' and 'make', may well be language-universal, many others are language-specific.
Resumo:
Ecological interface design (EID) is proving to be a promising approach to the design of interfaces for complex dynamic systems. Although the principles of EID and examples of its effective use are widely available, few readily available examples exist of how the individual displays that constitute an ecological interface are developed. This paper presents the semantic mapping process within EID in the context of prior theoretical work in this area. The semantic mapping process that was used in developing an ecological interface for the Pasteurizer II microworld is outlined, and the results of an evaluation of the ecological interface against a more conventional interface are briefly presented. Subjective reports indicate features of the ecological interface that made it particularly valuable for participants. Finally, we outline the steps of an analytic process for using EID. The findings presented here can be applied in the design of ecological interfaces or of configural displays for dynamic processes.