7 resultados para TRIMETHYL CHITOSAN

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT: Chitosan, a deacetylated chitin, is a widely available dietary supplement purported to decrease body weight and serum lipids through gastrointestinal fat binding. Although evaluated in a number of trials, its efficacy remains in dispute. OBJECTIVE: To evaluate the efficacy of chitosan for weight loss in overweight and obese adults. DESIGN AND SETTING: A 24-week randomised, double-blind, placebo-controlled trial, conducted at the University of Auckland between November 2001 and December 2002. PARTICIPANTS: A total of 250 participants (82% women; mean (s.d.) body mass index, 35.5 (5.1) kg/m(2); mean age, 48 (12) y). INTERVENTIONS: Participants were randomly assigned to receive 3 g chitosan/day (n = 125) or placebo (n = 125). All participants received standardised dietary and lifestyle advice for weight loss. Adherence was monitored by capsule counts. MAIN OUTCOME MEASURES: The primary outcome measure was change in body weight. Secondary outcomes included changes in body mass index, waist circumference, body fat percentage, blood pressure, serum lipids, plasma glucose, fat-soluble vitamins, faecal fat, and health-related quality of life. RESULTS: In an intention-to-treat analysis with the last observation carried forward, the chitosan group lost more body weight than the placebo group (mean (s.e.), -0.4 (0.2) kg (0.4% loss) vs +0.2 (0.2) kg (0.2% gain), P = 0.03) during the 24-week intervention, but effects were small. Similar small changes occurred in circulating total and LDL cholesterol, and glucose (P < 0.01). There were no significant differences between groups for any of the other measured outcomes. CONCLUSION: In this 24-week trial, chitosan treatment did not result in a clinically significant loss of body weight compared with placebo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Survival of the microencapsulated probiotics, Lactobacillus acidophilus 547, Bifidobacterium bifidum ATCC 1994, and Lactobacillus casei 01, in stirred yoghurt from UHT- and conventionally treated milk during low temperature storage was investigated. The probiotic cells both as free cells and microencapsulated cells (in alginate beads coated with chitosan) were added into 20 g/100 g total solids stirred yoghurt from UHT-treated milk and 16 g/100 g total solids yoghurt from conventionally treated milk after 3.5 h of fermentation. The products were kept at 4 degrees C for 4 weeks. The survival of encapsulated probiotic bacteria was higher than free cells by approximately 1 log cycle. The number of probiotic bacteria was maintained above the recommended therapeutic minimum (10(7) cfu g(-1)) throughout the storage except for R bifidum. The viabilities of probiotic bacteria in yoghurts from both UHT- and conventionally treated milks were not significantly (P > 0.05) different. (c) 2004 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although poly(alpha-hydroxy esters), especially the PLGA family of lactic acid/glycolic acid copolymers, have many properties which make them promising materials for tissue engineering, the inherent chemistry of surfaces made from these particular polymers is problematic. In vivo, they promote a strong foreign-body response as a result of nonspecific adsorption and denaturation of serum proteins, which generally results in the formation of a nonfunctional fibrous capsule. Surface modification post-production of the scaffolds is an often-utilized approach to solving this problem, conceptually allowing the formation of a scaffold with mechanical properties defined by the bulk material and molecular-level interactions defined by the modified surface properties. A promising concept is the so-called blank slate: essentially a surface that is rendered resistant to nonspecific protein adsorption but can be readily activated to covalently bind bio-functional molecules such as extracellular matrix proteins, growth factors or polysaccharides. This study focuses on the use of the quartz crystal microbalance (QCM) to follow the layer-by-layer (LbL) electrostatic deposition of high molecular weight hyaluronic acid and chitosan onto PLGA surfaces rendered positively charged by aminolysis, to form a robust, protein-resistant coating. We further show that this surface may be further functionalized via the covalent attachment of collagen IV, which may then be used as a template for the self-assembly of basement membrane components from dilute Matrigel. The response of NIH-3T3 fibroblasts to these surfaces was also followed and shown to closely parallel the results observed in the QCM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The probiotics, Lactobacillus acidophilus 547, Bifidobacterium bifidum ATCC 1994, and Lactobacillus casei 01, were encapsulated into uncoated calcium alginate beads and the same beads were coated with three types of material, chitosan, sodium alginate, and poly-L-lysine in combination with alginate. The thickness of the alginate beads increased with the addition of coating materials. No differences were detectable in the bead strength by texture analysis or in the thickness of the beads with different types of coating materials by transmission electron microscopy. The survivability of three probiotics in uncoated beads, coated beads, and as free cells (unencapsulated) was conducted in 0.6% bile salt solution and simulated gastric juice (pH 1.55) followed by incubation in simulated intestinal juice with and without 0.6% bile salt. Chitosan-coated alginate beads provided the best protection for L. acidophilus and L. casei in all treatments. However, B. bifidum did not survive the acidic conditions of gastric juice even when encapsulated in coated heads. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review with 93 references. Heparins are high molecular weight, hydrophilic polyanions, which are unstable under acidic conditions; and therefore they exhibit poor oral bioavailability. Consequently they must be administered via the parenteral route which is expensive, inconvenient, and limits use by outpatients. The development of an oral form of heparin is warranted. This review examined the literature, mostly published between January 2000 and January 2005, pertaining to the gastrointestinal absorption of heparin by lipidization or coadministration with penetration enhancers. A lipidization strategy that was examined involved conjugation of low molecular weight heparin with deoxycholic acid. The majority of studies examined the ability of different formulations, typically utilizing penetration enhancers, to improve heparin bioavailability. The penetration enhancers used included fatty acids, Labrasol™, Gelucire 44/14™, polycationic lipophilic-core dendrons, saponins, mono-N-carboxymethyl chitosan, Carbopol® 934P, a combination of thiolated polycarbophil and glutathione, polymeric nanoparticles, polymeric microparticles, sodium N-[8-(2-hydroxybenzoyl) amino]caprylate (SNAC), and sodium N-[10-(2-hydroxybenzoyl)amino]decanoate (SNAD). The variety of models used and doses of heparin/penetration enhancers applied, however, made it difficult to compare the results between studies. Nevertheless, all of the reviewed drug delivery systems showed therapeutic value and confirmation of the promising results obtained from animal studies, by progression to clinical trials, is necessary. Overall, progress has been made in the quest for an oral heparin formulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data concerning the 3-hydroxycineoles 1 and 2 are provided to enable the ready identification of these metabolites and to determine their enantiomeric excess in mixtures. An unusual S(N)2-type inversion at a tertiary center is observed during one synthetic approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of cyclosporine (CyA)-cyclodextrin (CD) complex incorporated within PLGA inicrospheres on microsphere characteristics, with particular emphasis on drug release kinetics. For this purpose, microspheres encapsulated with CyA and those loaded by CyA-CD complex were prepared by solvent evaporation and multiple emulsification solvent evaporation methods, respectively. Morphology, size, encapsulation efficiency and drug release pattern from microspheres were evaluated. Also, physicochemical properties of drug inside microspheres were characterized by differential scanning calorimetry (DSC) and infrared spectroscopy (IR) studies. Scanning electron microscopy (SEM) studies showed that microspheres encapsulated with CyA had islands on the microsphere surface but the islands were not seen on the surface of microspheres loaded by complex. Size range varied from 1 to 25 mu m for CyA encapsulated microspheres and 1 to 50 mu m for complex loaded microspheres. The release of CyA was biphasic with an initial more rapid release phase followed by a slower phase but drug release was twice as fast for complex loaded microspheres. IR studies did not indicate any chemical interaction between the components of microspheres and DSC thermograms revealed that CyA was present either in its amorphous state in microspheres or the presence of CyA as an inclusion complex within microspheres loaded by complex. In conclusion, using CyA as an inclusion complex with CD within microspheres can affect microsphere characteristics and drug release and it is possible to modify microsphere properties like drug release by incorporating CDs as complexing agents.