4 resultados para TRIATHLON
em University of Queensland eSpace - Australia
Resumo:
The aim of the present study was to examine the relationship between the performance heart rate during an ultra-endurance triathlon and the heart rate corresponding to several demarcation points measured during laboratory-based progressive cycle ergometry and treadmill running. Less than one month before an ultra-endurance triathlon, 21 well-trained ultra-endurance triathletes (mean +/- s: age 35 +/- 6 years, height 1.77 +/- 0.05 in, mass 74.0 +/- 6.9 kg, (V) over dot O-2peak = 4.75 +/- 0.42 1 center dot min(-1)) performed progressive exercise tests of cycle ergometry and treadmill running for the determination of peak oxygen uptake ((V) over do O-2peak), heart rate corresponding to the first and second ventilatory thresholds, as well as the heart rate deflection point. Portable telemetry units recorded heart rate at 60 s increments throughout the ultra-endurance triathlon. Heart rate during the cycle and run phases of the ultra-endurance triathlon (148 +/- 9 and 143 +/- 13 beats center dot min(-1) respectively) were significantly (P < 0.05) less than the second ventilatory thresholds (160 +/- 13 and 165 +/- 14 beats center dot min(-1) respectively) and heart rate deflection points (170 +/- 13 and 179 +/- 9 beats center dot min(-1) respectively). However, mean heart rate during the cycle and run phases of the ultra-endurance triathlon were significantly related to (r = 0.76 and 0.66; P < 0.01), and not significantly different from, the first ventilatory thresholds (146 +/- 12 and 148 +/- 15 beats center dot min(-1) respectively). Furthermore, the difference between heart rate during the cycle phase of the ultra-endurance triathlon and heart rate at the first ventilatory threshold was related to marathon run time (r = 0.61; P < 0.01) and overall ultra-endurance triathlon time (r = 0.45; P < 0.05). The results suggest that triathletes perform the cycle and run phases of the ultra-endurance triathlon at an exercise intensity near their first ventilatory threshold
Resumo:
This study assessed the knowledge, prevalence, and quantity of caffeine use by athletes competing at the 2005 Ironman Triathlon World Championships. Caffeine-related questionnaires were self-administered to 140 (105 male and 35 female, 40.3 +/- 10.7 y) athletes representing 16 countries. Fifty of these athletes further consented to immediate post-race blood samples for analysis of plasma caffeine and paraxanthine using high-performance liquid chromatography (HPLC). Seventy-two percent of 70 athletes correctly identified caffeine as being an unrestricted substance in triathlon. The majority of athletes [125 (89%)] were planning on using a caffeinated substance immediately prior to or throughout the race. Cola drinks (78%), caffeinated gels (42%), coffee (usually pre-race) (37%), energy drinks (13%), and NoDoz tablets (9%) were the most popular caffeinated choices. Mean standard deviation (and range) post race plasma caffeine and paraxanthine levels were 22.3 +/- 20 mu mol/L (1.7 to 98.4) and 9.4 +/- 6 mu mol/L (1.8 to 28.9), respectively. Seven athletes (14%) finished with plasma caffeine levels >= 40 mu mol/L. Plasma values from elite athletes did not differ from age group competitors. Despite the prevalence of its consumption and the training experience of this athletic group, over one quarter of athletes remained either confused or uninformed about caffeine's legality. Levels of plasma caffeine taken immediately post race indicated that athletes typically finish with quantities of caffeine that have been shown to improve endurance performance (i.e., approximate to 20 mu mol/L or a dose of >= 3 mg/kg body weight).
Relationship between laboratory measured variables and heart rate during an untraendurance triathlon