4 resultados para TRANSPARENT CARBON ELECTRODES

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nitrogen substitution in carbon materials is investigated theoretically using the density functional theory method. Our calculations show that nitrogen substitution decreases the hydrogen adsorption energy if hydrogen atoms are adsorbed on both nitrogen atoms and the neighboring carbon atoms. On the contrary, the hydrogen adsorption energy can be increased if hydrogen atoms are adsorbed only on the neighboring carbon atoms. The reason can be explained by the electronic structures analysis of N-substituted graphene sheets. Nitrogen substitution reduces the pi electron conjugation and increases the HOMO energy of a graphene sheet, and the nitrogen atom is not stable due to its 3-valent character. This raises an interesting research topic on the optimization of the N-substitution degree, and is important to many applications such as hydrogen storage and the tokamaks device. The electronic structure studies also explain well why nitrogen substitution increases the capacitance but decreases the electron conductivity of carbon electrodes as was experimentally observed in our experiments on the supercapacitor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A platinum (Pt) on pure ceria (CeO2) supported by carbon black (CB) anode was synthesized using a combined process of precipitation and coimpregnation methods. The electrochemical activity of methanol oxidation reaction on synthesized Pt-CeO2/CB anodes was investigated by cyclic voltammetry and chronoamperometry experimentation. To improve the anode property on Pt-CeO2/CB, the influence of particle morphology and particle size on anode properties was examined. The morphology and particle size of the pure CeO2 particles could be controlled by changing the preparation conditions. The anode properties (i.e., peak current density and onset potential for methanol oxidation) were improved by using nanosize CeO2 particles. This indicates that a larger surface area and higher activity on the surface of CeO2 improve the anode properties. The influence of particle morphology of CeO2 on anode properties was not very large. The onset potential for methanol oxidation reaction on Pt-CeO2/CB, which consisted of CeO2 with a high surface area, was shifted to a lower potential compared with that on the anodes, which consisted of CeO2 with a low surface area. The onset potential on Pt-CeO2/CB at 60 degrees C became similar to that on the commercially available Pt-Ru/carbon anode. We suggest that the rate-determining steps of the methanol oxidation reaction on Pt-CeO2/CB and commercially available Pt-Ru/carbon anodes are different, which accounts for the difference in performance. In the reaction mechanism on Pt-CeO2/CB, we conclude that the released oxygen species from the surface of CeO2 particles contribute to oxidation of adsorbed CO species on the Pt surface. This suggests that the anode performance of the Pt-CeO2/CB anode would lead to improvements in the operation of direct methanol fuel cells at 80 degrees C by the enhancement of diffusion of oxygen species created from the surface of nanosized CeO2 particles. Therefore, we conclude that fabrication of nanosized CeO2 with a high surface area is a key factor for development of a high-quality Pt-CeO2/CB anode in direct methanol fuel cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ordered nanoporous carbon (ONC) was comprehensively tested for the first time as electrode material in lithium-ion battery. Structure characterization shows the order nanoporous structure and tiny crystallite structure of as-synthesized ONC. The electrochemical properties of this carbon were studied by galvanostatic cycling and cyclic voltammetry. Of special interest is that ONC gave no peak on its positive sweep of the cyclic voltammetry, which was different from other known anode materials. Besides, X-ray photoelectron spectroscopy (XPS) and XRD were also used to investigate the electrochemical characteristics of ONC. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon possesses unique electrical and structural properties that make it an ideal material for use in fuel cell construction. In alkaline, phosphoric acid and proton-exchange membrane fuel cells (PEMFCs), carbon is used in fabricating the bipolar plate and the gas-diffusion layer. It can also act as a support for the active metal in the catalyst layer. Various forms of carbon - from graphite and carbon blacks to composite materials - have been chosen for fuel-cell components. The development of carbon nanotubes and the emergence of nanotechnology in recent years has therefore opened up new avenues of matenials development for the low-temperature fuel cells, particularly the hydrogen PEMFC and the direct methanol PEMFC. Carbon nanotubes and aerogels are also being investigated for use as catalyst support, and this could lead to the production of more stable, high activity catalysts, with low platinum loadings (< 0.1 Mg cm(-2)) and therefore low cost. Carbon can also be used as a fuel in high-temperature fuel cells based on solid oxide, alkaline or molten carbonate technology. In the direct carbon fuel cell (DCFC), the energy of combustion of carbon is converted to electrical power with a thermodynamic efficiency close to 100%. The DCFC could therefore help to extend the use of fossil fuels for power generation as society moves towards a more sustainable energy future. (c) 2006 Elsevier B.V. All rights reserved.