100 resultados para THYROXINE HORMONE
em University of Queensland eSpace - Australia
Resumo:
Transthyretin is an essential protein responsible for the transport of thyroid hormones and retinol in human serum and is also implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases, Here we report the solid phase synthesis of the monomeric unit of a transthyretin analog (equivalent to 127 amino acids) using t-Boc chemistry and peptide ligation and its folding to form a functional 54-kDa tetramer, The monomeric unit of the protein was chemically synthesized in three parts (positions 1-51, 54-99, and 102-127) and ligated using a chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of transthyretin's native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, transthyretin antibody recognition, and thyroid hormone binding. Other folding products included a high molecular weight aggregate as well as a transient dimeric species. This represents one of the largest macromolecules chemically synthesized to date and demonstrates the potential of protein chemical synthesis for investigations of protein-ligand interactions.
Resumo:
Transthyretin (TTR) is a 55 kDa protein responsible for the transport of thyroid hormones and retinol in human serum. Misfolded forms of the protein are implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases. To assist in such studies we developed a method for the solid phase synthesis of the monomeric unit of a TTR analogue and its folding to form a functional 55 kDa tetramer. The monomeric unit of the protein was chemically synthesized in three parts, comprising amino acid residues 151, 5499 and 102127, and ligated using chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of the TTRs native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, TTR antibody recognition and thyroid hormone binding. In the current study the solution structure of the first of these fragment peptides, TTR(151) is examined to determine its intrinsic propensity to form beta-sheet structure, potentially involved in amyloid fibril formation by TTR. Despite the presence of extensive beta-structure in the native form of the protein, the Nterminal fragment adopts an essentially random coil conformation in solution.
Resumo:
Verapamil inhibits tri-iodothyronine (T-3) efflux from several cell types, suggesting the involvement of multidrug resistance-associated (MDR) proteins in T-3 transport. The direct involvement of P-glycoprotein (P-gp) has not, however, been investigated. We compared the transport of I-125-T-3 in MDCKII cells that had been transfected with mdr1 cDNA (MDCKII-MDR) versus wild-type MDCKII cells (MDCKII), and examined the effect of conventional (verapamil and nitrendipine) and specific MDR inhibitors (VX 853 and VX 710) on I-125-T-3 efflux. We confirmed by Western blotting the enhanced expression of P-gp in MDCKII-MDR cells. The calculated rate of I-125-T-3 efflux from MDCKII-MDR cells (around 0.30/min) was increased twofold compared with MDCKII cells (around 0.15/min). Overall, cellular accumulation of I-125-T-3 was reduced by 26% in MDCKII-MDR cells compared with MDCKII cells, probably reflecting enhanced export of T-3 from MDCKII-MDR cells rather than reduced cellular uptake, as P-gp typically exports substances from cells. Verapamil lowered the rate of I-125-T-3 efflux from both MDCKII and MDCKII-MDR cells by 42% and 66% respectively, while nitrendipine reduced I-125-T-3 efflux rate by 36% and 48% respectively, suggesting that both substances inhibited other cellular T-3 transporters in addition to P-gp. The specific MDR inhibitors VX 853 and VX 710 had no effect of I-125-T-3 efflux rate from wild-type MDCKII cells but reduced I-125-T-3 export in MDCKII-MDR cells by 50% and 53% respectively. These results have provided the first direct evidence that P-gp exports thyroid hormone from cells.
Resumo:
A simple theoretical framework is presented for bioassay studies using three component in vitro systems. An equilibrium model is used to derive equations useful for predicting changes in biological response after addition of hormone-binding-protein or as a consequence of increased hormone affinity. Sets of possible solutions for receptor occupancy and binding protein occupancy are found for typical values of receptor and binding protein affinity constants. Unique equilibrium solutions are dictated by the initial condition of total hormone concentration. According to the occupancy theory of drug action, increasing the affinity of a hormone for its receptor will result in a proportional increase in biological potency. However, the three component model predicts that the magnitude of increase in biological potency will be a small fraction of the proportional increase in affinity. With typical initial conditions a two-fold increase in hormone affinity for its receptor is predicted to result in only a 33% increase in biological response. Under the same conditions an Ii-fold increase in hormone affinity for receptor would be needed to produce a two-fold increase in biological potency. Some currently used bioassay systems may be unrecognized three component systems and gross errors in biopotency estimates will result if the effect of binding protein is not calculated. An algorithm derived from the three component model is used to predict changes in biological response after addition of binding protein to in vitro systems. The algorithm is tested by application to a published data set from an experimental study in an in vitro system (Lim et al., 1990, Endocrinology 127, 1287-1291). Predicted changes show good agreement (within 8%) with experimental observations. (C) 1998 Academic Press Limited.
Resumo:
GH-binding protein (GHBP) corresponds to the extracellular domain of the GH receptor (GHR) and has been shown to be closely related to body fat. This study aimed to examine the inter-relationship between GHBP, leptin and body fat, and to test the hypothesis that GHBP is modified by GH replacement in GH-deficient adults and predicts IGF-I response. Twenty adults, mean age 47 years (range 20-69) with proven GH deficiency were randomly allocated to either GH (up to 0.25 U/kg/week in daily doses) or placebo for 3 months before cross-over to the opposite treatment. Plasma GHBP and leptin were measured at baseline and 2, 4, 8 and 12 weeks after each treatment. Whole body composition was measured at baseline by dual-energy X-ray absorptiometry (DEXA). There was a strong correlation between baseline leptin and GHBP (r = 0.88, P < 0.0001) and between baseline GHBP and percentage body fat, (r = 0.83, P < 0.0001). Mean GHBP levels were higher on GH compared with placebo, 1.53 +/- 0.28 vs 1.41 +/- 0.25 nM, P = 0.049. There was no correlation between baseline IGF-I and GHBP (r = -0.049, P = 0.84), and GHBP did not predict IGF-I response to GH replacement. The close inter-relationship between GHBP, leptin and body fat suggests a possible role for GHBP in the regulation of body composition. GHBP is increased by GH replacement in GH-deficient adults, but does not predict biochemical response to GH replacement. (C) 1999 Churchill Livingstone.
Resumo:
Increasing evidence from human epidemiological studies suggests that poor growth before birth is associated with postnatal growth retardation and the development of cardiovascular disease in adulthood. We have shown previously that nutritional deprivation in the pregnant rat leads to intrauterine growth retardation (IUGR), postnatal growth failure, changes in the endocrine parameters of the somatotrophic axis, and to increased blood pressure in later life. In the present study, we investigated whether administration of insulin-like growth factor-I (IGF-I) or bovine growth hormone (GH) during pregnancy could prevent IUGR and/or alter long-term outcome. Dams h-om day 1 of pregnancy throughout gestation received a diet of nd libitum available food or a restricted dietary intake of 30% of ad libitum fed dams. From day 10 of gestation, dams were treated for 10 days with three times daily subcutaneous injections of saline (100 mu l), IGF-I (2 mu g/g body weight) or GH (2 mu g/g body weight). Maternal weight gain was significantly increased (P
Resumo:
We previously described significant changes in GH-binding protein (GHBP) in pathological human pregnancy. There was a substantial elevation of GHBP in cases of noninsulin-dependent diabetes mellitus and a reduction in insulin-dependent diabetes mellitus. GHBP has the potential to modulate the proportion of free placental GH (PGH) and hence the impact on the maternal GH/insulin-like growth factor I (IGF-I) axis, fetal growth, and maternal glycemic status. The present study was undertaken to investigate the relationship among glycemia, GHBP, and PGH during pregnancy and to assess the impact of GHBP on the concentration of free PGH. We have extended the analysis of specimens to include measurements of GHBP, PGH, IGF-I, IGF-II, IGF-binding protein-1 (IGFBP-1), IGFSP-2, and IGFBP-3 and have related these to maternal characteristics, fetal growth, and glycemia. The simultaneous measurement of GHBP and PGH has for the first time allowed calculation of the free component of PGH and correlation of the free component to indexes of fetal growth and other endocrine markers. PGH, free PGH, IGF-I, and IGF-II were substantially decreased in IUGR at 28-30 weeks gestation (K28) and 36-38 weeks gestation (K36). The mean concentration (+/-SEM) of total PGH increased significantly from K28 to K36 (30.0 +/- 2.2 to 50.7 +/- 6.2 ng/mL; n = 40), as did the concentration of free PGH (23.4 +/- 2.3 to 43.7 +/- 6.0 ng/mL; n = 38). The mean percentage of free PGH was significantly less in IUGR than in normal subjects (67% vs. 79%; P < 0.01). Macrosomia was associated with an increase in these parameters that did not reach statistical significance. Multiple regression analysis revealed that PGH/IGF-I and IGFBP-5 account for 40% of the variance in birth weight. IGFBP-3 showed a significant correlation with IGF-I, IGF-II, and free and total PGK at K28 and K36. Noninsulin-dependent diabetes mellitus patients had a lower mean percentage of free PGH (65%; P < 0.01), and insulin-dependent diabetics had a higher mean percentage of free PGH (87%; P < 0.01) than normal subjects. Mean postprandial glucose at K28 correlated positively with PGH and free PGH (consistent with the hyperglycemic action of GH). GHBP correlated negatively with both postprandial and fasting glucose. Although GHBP correlated negatively with PGH (r = -0.52; P
Resumo:
A randomised crossover dietary intervention study was performed to evaluate the effects of replacing meat protein in the diet with a soyabean product, tofu, on blood concentrations of testosterone, dihydrotestosterone, androstanediol glucuronide, oestradiol, sex hormone-binding globulin (SHBG), and the free androgen index (total testosterone concentration/SHBG concentration x 100; FAI). Forty-two healthy adult males aged 35-62 years were studied. Diets were isoenergetic, with either 150 g lean meat or 290 g tofu daily providing an equivalent amount of macronutrients, with only the source of protein differing between the two diets. Each diet lasted for 4 weeks, with a 2-week interval between interventions. Fasting blood samples were taken between 07.00 and 09.30 hours. Urinary excretion of genistein and daidzein was significantly higher after the tofu diet (P
Resumo:
Objective The syndrome of inappropriate secretion of antidiuretic hormone is a rare disorder in dogs characterised by hypo-osmolality and persistent arginine vasopressin production in the absence of hypovolaemia and/or hypotension. The study describes the efficacy and safety of the nonpeptide selective arginine vasopressin V-2 receptor antagonist OPC-31260 in a dog with the naturally occurring syndrome. Design The detailed case history of a dog with spontaneous syndrome of inappropriate secretion of antidiuretic hormone that received long-term therapy with oral OPC-31260 is presented. Effects of the first dose of OPC-31260 and of a dose administered after a continuous dosing period of 12 days are reported. Procedure Packed cell volume, plasma sodium, total protein, arginine vasopressin, renin activity, atrial natriuretic peptide, urine specific gravity, urine output, heart rate and body weight were monitored for 2 h before, and for 4 h after, the first dose of OPC-31260. The same parameters plus plasma osmolality and urine osmolality were monitored when an identical dose was administered after 12 days of therapy. Results Oral administration of OPC-31260 at 3 mg/kg body weight resulted in marked aquaresis with increased urine output and decline in urine specific gravity within 1 h. Corresponding increases in concentrations of plasma sodium, plasma osmolality and plasma renin activity were recorded over a 4 h period. Arginine vasopressin concentration remained inappropriately elevated throughout the study. Results were similar when the trial procedure was repeated after a stabilisation period of 12 days. Long-term therapy with OPC-31260 at a dose of 3 mg/kg body weight orally every 12 h resulted in good control of clinical signs with no deleterious effects detected during a 3-year follow-up period. Despite sustained clinical benefits observed in this case, plasma sodium did not normalise with continued administration of the drug. Conclusions Treatment of a dog with naturally occurring syndrome of inappropriate secretion of antidiuretic hormone with OPC-31260 at 3 mg/kg body weight orally every 12 h resulted in marked aquaresis and significant palliation of clinical signs with no discernible side-effects detected over a 3-year period. Thus, OPC-31260 appears to offer a feasible medical alternative to water restriction for treatment of dogs with syndrome of inappropriate secretion of antidiuretic hormone. Higher doses of OPC-31260 may be required to achieve and maintain normal plasma sodium in dogs with this syndrome.
Resumo:
We examined the effect of recombinant human growth hormone (rhGH) and/or recombinant human insulin-like growth factor-I (rhIGF-I) on regional fat loss in postmenopausal women undergoing a weight loss regimen of diet plus exercise. Twenty-seven women aged 59-79 years, 20-40% above ideal body weight, completed a 12-week program consisting of resistance training 2 days/week and walking 3 days/week, while consuming a diet that was 500 kcal/day less than that required for weight maintenance, Participants were randomly assigned in a double-blind fashion to receive rhGH (0.025 mg/kg BW/day: n=7), rhIGF-I (0.015 mg/kg BW/day: n=7), rhGH + rhIGF-I (n = 6), or placebo (PL: n = 7). Regional and whole body fat mass were determined by dual X-ray absorptiometry. Body fat distribution was assessed by the ratios of trunk fat-to-limb fat (TrF/LimbF) and trunk fat-to-total fat (TrF/TotF), Limb and trunk fat decreased in all groups (p < 0.01). For both ratios of fat distribution, the rhGH treated group experienced an enhanced loss of truncal compared to peripheral fat (p less than or equal to 0.01), with no significant change for those administered rhIGF-I or FL. There was no association between change in fat distribution and indices of cardiovascular disease risk as determined by serum lipid/lipoprotein levels and maximal aerobic capacity. These results suggest that administration of rhGH facilitates a decrease in central compared to peripheral fat in older women undertaking a weight loss program that combines exercise and moderate caloric restriction, although no beneficial effects are conferred to lipid/lipoprotein profiles, Further, the effect of rhGH is not enhanced by combining rhCH with rhIGF-I administration. In addition, rhIGF-I does not augment the loss of trunk fat when administered alone.
Resumo:
A proteomics approach was used to identify the proteins potentially implicated in the cellular response concomitant with elevated production levels of human growth hormone in a recombinant Chinese hamster ovary (CHO) cell line following exposure to 0.5 mM butyrate and 80 muM zinc sulphate in the production media. This involved incorporation of two-dimensional (2-D) gel electrophoresis and protein identification by a combination of N-terminal sequencing, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry, amino acid analysis and cross species database matching. From these identifications a CHO 2-D reference,map and annotated database have been established. Metabolic labelling and subsequent autoradiography showed the induction of a number of cellular proteins in response to the media additives butyrate and zinc sulphate. These were identified as GRP75, enolase and thioredoxin. The chaperone proteins GRP78, HSP90, GRP94 and HSP70 were not up-regulated under these conditions.
Resumo:
We report a prospective, randomized, multi-center, open-label 2-year trial of 81 postmenopausal women aged 53-79 years with at least one minimal-trauma vertebral fracture (VF) and low (T-score below 2) lumbar bone mineral density (BMD). Group HRT received piperazine estrone sulfate (PES) 0.625 - 1.25 mg/d +/- medroxyprogesterone acetate (MPA) 2.5 - 5 mg/d,- group HRT/D received HRT plus calcitriol 0.25 mug bd. All with a baseline dietary calcium (Ca) of < I g/d received Ca carbonate 0.6 g nocte. Final data were on 66 - 70 patients. On HRT/D, significant (P < 0.001) BNID increases from baseline by DXA were at total body - head, trochanter, Ward's, total hip, inter-trochanter and femoral shaft (% group mean Delta 4.2, 6.1, 9.3. 3.7. 3.3 and 3.3%, respectively). On HRT, at these significant Deltas were restricted to the trochanter and sites. si Wards. Significant advantages of HRT/D over HRT were in BMD of total body (- head), total hip and trochanter (all P = 0.01). The differences in mean Delta at these sites were 1.3, 2.6 and 3.9%. At the following, both groups Improved significantly -lumbar spine (AP and lateral), forearm shaft and ultradistal tibia/fibula. The weightbearing, site - specific benefits of the combination associated with significant suppression of parathyroid hormone-suggest a beneficial effect on cortical bone. Suppression of bone turnover was significantly greater on HRT/D (serum osteocalcin P = 0.024 and urinary hydroxyproline/creatinine ratio P = 0.035). There was no significant difference in the number of patients who developed fresh VFs during the trial (HRT 8/36, 22%; HRT/D 4/34, 12% - intention to treat); likewise in the number who developed incident nonvertebral fractures. This Is the first study comparing the 2 treatments in a fracture population. The results indicate a significant benefit of calcitriol combined with HRT on total body BMD and on BNID at the hip, the major site of osteoporotic fracture.