12 resultados para THERMAL RATE COEFFICIENT

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The RAFT-CLD-T methodology is demonstrated to be not only applicable to 1-substituted monomers such as styrene and acrylates, but also to 1,1-disubstituted monomers such as MMA. The chain length of the terminating macromolecules is controlled by CPDB in MMA bulk free radical polymerization at 80 degrees C. The evolution of the chain length dependent termination rate coefficient, k(t)(i,i), was constructed in a step-wise fashion, since the MMA/CPDB system displays hybrid behavior (between conventional and living free radical polymerization) resulting in initial high molecular weight polymers formed at low RAFT agent concentrations. The obtained CLD of k(t) in MMA polymerizations is compatible with the composite model for chain length dependent termination. For the initial chain-length regime, up to a degree of polymerization of 100, k(t) decreases with alpha (in the expression k(t)(i,i) = k(t)(0) . i(-alpha)) being close to 0.65 at 80 degrees C. At chain lengths exceeding 100, the decrease is less pronounced (affording an alpha of 0.15 at 80 degrees C). However, the data are best represented by a continuously decreasing nonlinear functionality implying a chain length dependent alpha.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photopyroelectric spectroscopy (PPE) was used to study the thermal and optical properties of melanins. The photopyroelectric intensity signal and its phase were independently measured as a function of wavelength and chopping frequency for a given wavelength in the saturation part of the PPE spectrum. Equations for both the intensity and the phase of the PPE signal were used to fit the experimental results. From these fits we obtained for the first time, with great accuracy, the thermal diffusivity coefficient, the thermal conductivity, and the specific heat of the samples, as well as a value for the condensed phase optical gap, which we found to be 1.70 eV. (c) 2005 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work deals with the random free vibration of functionally graded laminates with general boundary conditions and subjected to a temperature change, taking into account the randomness in a number of independent input variables such as Young's modulus, Poisson's ratio and thermal expansion coefficient of each constituent material. Based on third-order shear deformation theory, the mixed-type formulation and a semi-analytical approach are employed to derive the standard eigenvalue problem in terms of deflection, mid-plane rotations and stress function. A mean-centered first-order perturbation technique is adopted to obtain the second-order statistics of vibration frequencies. A detailed parametric study is conducted, and extensive numerical results are presented in both tabular and graphical forms for laminated plates that contain functionally graded material which is made of aluminum and zirconia, showing the effects of scattering in thermo-clastic material constants, temperature change, edge support condition, side-to-thickness ratio, and plate aspect ratio on the stochastic characteristics of natural frequencies. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Males of the eastern mosquito fish (Gambusia holbrooki) possess one of the widest reproductively active temperature ranges for any ectotherm, ranging across seasons from at least 18degreesC to 34degreesC. In this study, we tested the ability of male G. holbrooki to acclimate their sustained swimming performance following long-term exposure to 18degreesC or 30degreesC. We also investigated some of the possible physiological mechanisms associated with thermal acclimation responses in swimming performance, including changes in slow muscle fibre size and abundance and the expression of myosin heavy chains (MyHC). We found that U-crit, of 18degreesC-acclimated G. holbrooki was 20% greater at 18degreesC than 30degreesC-acclimated fish, and the Ucrit of the 30degreesC-acclimated group was more than 15% greater at 30degreesC. Slow, fast and intermediate muscle fibres were identified on the basis of their myosin ATPase staining reaction. Although the number of slow and intermediate muscle fibres was similar between groups, the total cross-sectional area of aerobic fibre types was 40% greater in 18degrees-than 30degreesC-acclimated fish, reflecting an increase in the average fibre diameter. An S58 antibody raised against chicken slow skeletal muscle myosin stained a sub-set of the slow fibres identified by myosin ATPase staining. The number of S58-positive muscle fibres was 50% greater in 30degreesC-than 18degreesC-acclimated fish, implying that different MyHCs are being expressed in cold and warm acclimated individuals. Given the sexually coercive mating system of this species, increases in the sustained swimming performance via thermal acclimation may benefit the ability of males to maintain a high rate of sneaky copulations. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential heart rates during heating and cooling (heart rate hysteresis) are an important thermoregulatory mechanism in ectothermic reptiles. We speculate that heart rate hysteresis has evolved alongside vascularisation, and to determine whether this phenomenon occurs in a lineage with vascularised circulatory systems that is phylogenetically distant from reptiles, we measured the response of heart rate to convective heat transfer in the Australian freshwater crayfish, Cherax destructor. Heart rate during convective heating (from 20 to 30 degreesC) was significantly faster than during cooling for any given body temperature. Heart rate declined rapidly immediately following the removal of the heat source, despite only negligible losses in body temperature. This heart rate 'hysteresis' is similar to the pattern reported in many reptiles and, by varying peripheral blood flow, it is presumed to confer thermoregulatory benefits particularly given the thermal sensitivity of many physiological rate functions in crustaceans. (C) 2004 Published by Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite-difference time-domain (FDTD) thermal model has been developed to compute the temperature elevation in the Sprague Dawley rat due to electromagnetic energy deposition in high-field magnetic resonance imaging (MRI). The field strengths examined ranged from 11.75-23.5 T (corresponding to H-1 resonances of 0.5-1 GHz) and an N-stub birdcage resonator was used to both transmit radio-frequency energy and receive the MRI signals. With an in-plane resolution of 1.95 mm, the inhomogeneous rat phantom forms a segmented model of 12 different tissue types, each having its electrical and thermal parameters assigned. The steady-state temperature distribution was calculated using a Pennes 'bioheat' approach. The numerical algorithm used to calculate the induced temperature distribution has been successfully validated against analytical solutions in the form of simplified spherical models with electrical and thermal properties of rat muscle. As well as assisting with the design of MRI experiments and apparatus, the numerical procedures developed in this study could help in future research and design of tumour-treating hyperthermia applicators to be used on rats in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the behavioural responses of two gobiid fish species to temperature to determine if differences in behaviour and ventilation rate might explain any apparent vertical zonation. A survey of the shore at Manly, Moreton Bay revealed Favonigobius exquisitus to dominate the lower shore and Pseudogobius sp. 4 the upper shore. These species were exposed to a range of temperatures (15-40 degreesC) in aquaria for up to 6 h. At 20 degreesC F. exquisitus exhibited a mean gill ventilation rate of 26 +/- 1.4 bpm (beats per minute) differing significantly from Pseudogobius, which ventilated at a fivefold greater rate of 143 +/- 6 bpm. The ventilation rate in F. exquisitus underwent a fivefold increase from normal local water temperature (20 degreesC) to high temperature (35 degreesC) conditions, whereas that of Pseudogobius did not even double, suggesting that Pseudogobius sp. is a better thermal regulator than F. exquisitus. While both species emerged from the water at high temperatures (>30 degreesC) the behaviours they exhibited while immersed at high temperature were quite different. F. exquisitus undertook vertical displacement movements we interpret as an avoidance response, whereas Pseudogobius sp. appeared to use a coping strategy involving movements that might renew the water mass adjacent to its body. The thermal tolerances and behaviours of F. exquisitus and Pseudogobius sp. are in broad agreement with their vertical distribution on the shore.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparison is made between Arrhenius and transition-state analyses of the temperature dependence of rate constants reported in four published biosensor studies. Although the Eyring transition-state theory seemingly affords a more definitive solution to the problem of characterizing the activation energetics, the analysis is equivocal because of inherent assumptions about reaction mechanism and the magnitude of the transmission coefficient. In view of those uncertainties it is suggested that a preferable course of action entails reversion to the empirical Arrhenius analysis with regard to the energy of activation and a preexponential factor. The former is essentially equivalent to the enthalpy of activation, whereas the magnitude of the latter indicates directly the extent of disparity between the frequency of product formation and the universal frequency factor (temperature multiplied by the ratio of the Boltzmann and Planck constants) and hence the likelihood of a more complicated kinetic mechanism than that encompassed by the Eyring transition-state theory. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The published requirements for accurate measurement of heat transfer at the interface between two bodies have been reviewed. A strategy for reliable measurement has been established, based on the depth of the temperature sensors in the medium, on the inverse method parameters and on the time response of the sensors. Sources of both deterministic and stochastic errors have been investigated and a method to evaluate them has been proposed, with the help of a normalisation technique. The key normalisation variables are the duration of the heat input and the maximum heat flux density. An example of application of this technique in the field of high pressure die casting is demonstrated. The normalisation study, coupled with previous determination of the heat input duration, makes it possible to determine the optimum location for the sensors, along with an acceptable sampling rate and the thermocouples critical response-time (as well as eventual filter characteristics). Results from the gauge are used to assess the suitability of the initial design choices. In particular the unavoidable response time of the thermocouples is estimated by comparison with the normalised simulation. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenology of 11 diverse accessions of wild mungbean was observed under natural and artificial photoperiod - temperature conditions, in order to examine whether genotypic differences might be attributed to adaptive responses to photo-thermal conditions. There was large variation in phenological response among accessions and across environments, much of which was due to differences in the duration of the pre-flowering phase. Accessions that flowered earlier tended to flower for longer, apart from 2 earlier flowering, inland Australian lines that were also earlier maturing. The patterns of response in time from sowing to flowering over environment were consistent with quantitative short-day photoperiodic adaptation, a conclusion supported by the effects of artificial day-length extension and by 'goodness of fit' of the observed responses to standard models relating rate of development to photoperiod and temperature. The fitted models indicated that rate of development towards flowering was hastened by warmer temperatures, and delayed by longer day lengths, with differential sensitivity between accessions to both factors. The models also suggested that photoperiod was more important for accessions collected closer to the equator, which were generally later flowering as a consequence. Conversely, temperature was relatively more important in lines from higher latitudes. Modelling also suggested that the period from first flowering to maturity was sensitive to photoperiod and temperature. Again, longer days appeared to prolong growth and delay maturity. However, cooler temperatures accelerated rather than slowed maturity, by suppressing further vegetative growth. The variation observed indicated that there is considerable scope for using the wild population to broaden the adaptation of cultivated mungbean. In particular, the unusual response of a late-flowering, photoperiod-insensitive accession warrants further study to establish whether the wild population contains a unique 'long juvenile' trait analogous to that being used for improving phenological adaptation in soybean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last 50 yr, thermal biology has shifted from a largely physiological science to a more integrated science of behavior, physiology, ecology, and evolution. Today, the mechanisms that underlie responses to environmental temperature are being scrutinized at levels ranging from genes to organisms. From these investigations, a theory of thermal adaptation has emerged that describes the evolution of thermoregulation, thermal sensitivity, and thermal acclimation. We review and integrate current models to form a conceptual model of coadaptation. We argue that major advances will require a quantitative theory of coadaptation that predicts which strategies should evolve in specific thermal environments. Simply combining current models, however, is insufficient to understand the responses of organisms to thermal heterogeneity; a theory of coadaptation must also consider the biotic interactions that influence the net benefits of behavioral and physiological strategies. Such a theory will be challenging to develop because each organism's perception of and response to thermal heterogeneity depends on its size, mobility, and life span. Despite the challenges facing thermal biologists, we have never been more pressed to explain the diversity of strategies that organisms use to cope with thermal heterogeneity and to predict the consequences of thermal change for the diversity of communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All copulations in the eastern mosquitofish, Gambusia holbrooki, are coercive-and-achieved by force. Female G. holbrooki never appear to cooperate with males, but vigorously resist matings at all times. We examined the role of females within a sexually coercive mating system by investigating the ability of female G. holbrooki to resist forced copulations after acclimation to 16 degrees C and 32 degrees C for 4-5 weeks. We also examined burst swimming performance of female G. holbrooki after acclimation, as this trait is likely to underlie a female's ability to resist forced matings. We predicted that if female G. holbrooki indiscriminately resist matings from all males, acclimation would enhance female resistance at their acclimation temperature. However, we found that it did not. We also predicted that if females are able to influence the outcome of mating interactions, acclimation to an optimal thermal environment may induce females to reduce resistance. In support of this prediction, females acclimated at 32 degrees C were able to modify their resistance behaviour between exposure to 16 degrees C and 32 degrees C. The rate of copulations experienced by 32 inverted perpendicular C-acclimated females was 2.5 times greater at 32 degrees C than at 16 degrees C. In addition, acclimation at 32 degrees C significantly enhanced burst swimming performance at 32 degrees C but no effect of acclimation was observed at 16 degrees C. Our results suggest that female G. holbrooki are able to play a greater role in determining the outcome of sexual coercive mating interactions than previously thought. (c) 2006 The Association for the Shidy of Animal Behavioor. Published by Elsevier Ltd. All rights reserved.