7 resultados para THERMAL ENVIRONMENT
em University of Queensland eSpace - Australia
Resumo:
The phenology of 11 diverse accessions of wild mungbean was observed under natural and artificial photoperiod - temperature conditions, in order to examine whether genotypic differences might be attributed to adaptive responses to photo-thermal conditions. There was large variation in phenological response among accessions and across environments, much of which was due to differences in the duration of the pre-flowering phase. Accessions that flowered earlier tended to flower for longer, apart from 2 earlier flowering, inland Australian lines that were also earlier maturing. The patterns of response in time from sowing to flowering over environment were consistent with quantitative short-day photoperiodic adaptation, a conclusion supported by the effects of artificial day-length extension and by 'goodness of fit' of the observed responses to standard models relating rate of development to photoperiod and temperature. The fitted models indicated that rate of development towards flowering was hastened by warmer temperatures, and delayed by longer day lengths, with differential sensitivity between accessions to both factors. The models also suggested that photoperiod was more important for accessions collected closer to the equator, which were generally later flowering as a consequence. Conversely, temperature was relatively more important in lines from higher latitudes. Modelling also suggested that the period from first flowering to maturity was sensitive to photoperiod and temperature. Again, longer days appeared to prolong growth and delay maturity. However, cooler temperatures accelerated rather than slowed maturity, by suppressing further vegetative growth. The variation observed indicated that there is considerable scope for using the wild population to broaden the adaptation of cultivated mungbean. In particular, the unusual response of a late-flowering, photoperiod-insensitive accession warrants further study to establish whether the wild population contains a unique 'long juvenile' trait analogous to that being used for improving phenological adaptation in soybean.
Resumo:
The leaf growth, dry matter production, and seed yield of 11 wild mungbean ( Vigna radiata ssp. sublobata) accessions of diverse geographic origin were observed under natural and artificial photoperiod temperature conditions, to determine the extent to which genotypic differences could be attributed to adaptive responses to photo-thermal environment. Environments included serial sowings in the field in SE Queensland, complemented by artificial photoperiod extension and controlled-environment growth rooms. Photo-thermal environment influenced leaf growth, total dry matter production ( TDM), and seed yield directly, through effects of ( mainly cool) temperature on growth, and indirectly, through effects on phenology. In terms of direct effects, leaf production, leaf expansion, and leaf area were all sensitive to temperature, with implied base temperatures higher than usually observed in cultivated mungbean ( V. radiata ssp. radiata). Genotypic sensitivity to temperature varied systematically with accession provenance and appeared to be of adaptive significance. In terms of the indirect effects of photo-thermal environment, genotypic and environmental effects on TDM were positively related to changes in total growth duration, and harvest index was negatively related to the period from sowing to flowering, similar to cultivated mungbean. However, seed yield was positively related to the duration of reproductive growth, reflecting the indeterminate growth habit of the wild accessions. As a consequence, the wild accessions are more responsive to favourable environments than typically observed in cultivated mungbean, which is determinate in habit. It is suggested that the introduction of the indeterminate trait into mungbean from the wild subspecies would increase the responsiveness of mungbean to favourable environments, analogous to that of black gram ( V. mungo). Although the wild subspecies appeared more sensitive to cool temperature than cultivated mungbean, it may provide a source of tolerance to the warmer temperatures experienced during the wet season in the tropics.
Resumo:
During metamorphosis, most amphibians undergo rapid shifts in their morphology that allow them to move from an aquatic to a more terrestrial existence. Two important challenges associated with this shift in habitat are the necessity to switch from an aquatic to terrestrial mode of locomotion and changes in the thermal environment. In this study, I investigated the consequences of metamorphosis to the burst swimming and running performance of the European newt Triturus cristatus to determine the nature and magnitude of any locomotor trade-offs that occur across life-history stages. In addition, I investigated whether there were any shifts in the thermal dependence of performance between life-history stages of T. cristatus to compensate for changes in their thermal environment during metamorphosis. A trade-off between swimming and running performance was detected across life-history stages, with metamorphosis resulting in a simultaneous decrease in swimming and increase in running performance. Although the terrestrial habitat of postmetamorphic stages of the newt T. cristatus experienced greater daily fluctuations in temperature than the aquatic habitat of the larval stage, no differences in thermal sensitivity of locomotor performance were detected between the larval aquatic and postmetamorphic stages. The absence of variation across life-history stages of T. cristatus may indicate that thermal sensitivity may be a conservative trait across ontogenetic stages in amphibians, but further studies are required to investigate this assertion.
Resumo:
All copulations in the eastern mosquitofish, Gambusia holbrooki, are coercive-and-achieved by force. Female G. holbrooki never appear to cooperate with males, but vigorously resist matings at all times. We examined the role of females within a sexually coercive mating system by investigating the ability of female G. holbrooki to resist forced copulations after acclimation to 16 degrees C and 32 degrees C for 4-5 weeks. We also examined burst swimming performance of female G. holbrooki after acclimation, as this trait is likely to underlie a female's ability to resist forced matings. We predicted that if female G. holbrooki indiscriminately resist matings from all males, acclimation would enhance female resistance at their acclimation temperature. However, we found that it did not. We also predicted that if females are able to influence the outcome of mating interactions, acclimation to an optimal thermal environment may induce females to reduce resistance. In support of this prediction, females acclimated at 32 degrees C were able to modify their resistance behaviour between exposure to 16 degrees C and 32 degrees C. The rate of copulations experienced by 32 inverted perpendicular C-acclimated females was 2.5 times greater at 32 degrees C than at 16 degrees C. In addition, acclimation at 32 degrees C significantly enhanced burst swimming performance at 32 degrees C but no effect of acclimation was observed at 16 degrees C. Our results suggest that female G. holbrooki are able to play a greater role in determining the outcome of sexual coercive mating interactions than previously thought. (c) 2006 The Association for the Shidy of Animal Behavioor. Published by Elsevier Ltd. All rights reserved.
Resumo:
To survive adverse or unpredictable conditions in the ontogenetic environment, many organisms retain a level of phenotypic plasticity that allows them to meet the challenges of rapidly changing conditions. Larval anurans are widely known for their ability to modify behaviour, morphology and physiological processes during development, making them an ideal model system for studies of environmental effects on phenotypic traits. Although temperature is one of the most important factors influencing the growth, development and metamorphic condition of larval anurans, many studies have failed to include ecologically relevant thermal fluctuations among their treatments. We compared the growth and age at metamorphosis of striped marsh frogs Limnodynastes peronii raised in a diurnally fluctuating thermal regime and a stable regime of the same mean temperature. We then assessed the long-term effects of the larval environment on the morphology and performance of post-metamorphic frogs. Larval L. peronii from the fluctuating treatment were significantly longer throughout development and metamorphosed about 5 days earlier. Frogs from the fluctuating group metamorphosed at a smaller mass and in poorer condition compared with the stable group, and had proportionally shorter legs. Frogs from the fluctuating group showed greater jumping performance at metamorphosis and less degradation in performance during a 10-week dormancy. Treatment differences in performance could not be explained by whole-animal morphological variation, suggesting improved contractile properties of the muscles in the fluctuating group.
Resumo:
Specialization to a particular environment is one of the main factors used to explain species distributions. Antarctic fishes are often cited as a classic example to illustrate the specialization process and are regarded as the archetypal stenotherms. Here we show that the Antarctic fish Pagothenia borchgrevinki has retained the capacity to compensate for chronic temperature change. By displaying astounding plasticity in cardiovascular response and metabolic control, the fishes maintained locomotory performance at elevated temperatures. Our falsification of the specialization paradigm indicates that the effect of climate change on species distribution and extinction may be overestimated by current models of global warming.
Resumo:
Purpose: The impact of acute weight loss on rowing performance was assessed when generous nutrient intake was provided in 2 h of recovery after making weight. Methods: Competitive rowers (N = 17) completed four ergometer trials, each separated by 48 h. Two trials were performed after a 4% body mass loss in the previous 24 h (WT) and two were performed after no weight restrictions, that is, unrestricted (UNR). In addition, two trials (I X WT, I X UNR) were in a thermoneutral environment (NEUTRAL, mean 21.1 +/- SD 0.7 degrees C, 29.0 +/- 4.5% RH) and two were in the heat (HOT 32.4, +/- 0.4 degrees C, 60.4 +/- 2.7% RH). Trials were performed in a counterbalanced fashion according to a Latin square design. Aggressive nutritional recovery strategies (WT 2.3 g(.)kg(-11) carbohydrate, 34 mg-kg(-1) Na, 28.4 mL(.)kg(-1) fluid; UNR ad libitum) were employed in the 2 h after weigh-in. Results: Both WT (mean 2.1, 95% CI 0.7-3.4 s; P = 0.003) and HOT (4.1, 2.7 - 5.4 s; P < 0.001) compromised 2000-m time-trial performance. Whereas WT resulted in hypohydration, the associated reduction in plasma volume explained only part of the performance compromise observed (0.2 s for every 1% decrement) Moreover, WT did not influence core temperature or indices of cardiovascular function. Conclusions: Acute weight loss compromised performance, despite generous nutrient intake in recovery, although the effect was small. Performance decrements were further exacerbated when exercise was performed in the heat.