14 resultados para TFG Director
em University of Queensland eSpace - Australia
Resumo:
A model for finely layered visco-elastic rock proposed by us in previous papers is revisited and generalized to include couple stresses. We begin with an outline of the governing equations for the standard continuum case and apply a computational simulation scheme suitable for problems involving very large deformations. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered beam under compression. We analyse folding up to 40% shortening. The standard continuum solution becomes unstable for extreme values of the shear/normal viscosity ratio. The instability is a consequence of the neglect of the bending stiffness/viscosity in the standard continuum model. We suggest considering these effects within the framework of a couple stress theory. Couple stress theories involve second order spatial derivatives of the velocities/displacements in the virtual work principle. To avoid C-1 continuity in the finite element formulation we introduce the spin of the cross sections of the individual layers as an independent variable and enforce equality to the spin of the unit normal vector to the layers (-the director of the layer system-) by means of a penalty method. We illustrate the convergence of the penalty method by means of numerical solutions of simple shears of an infinite layer for increasing values of the penalty parameter. For the shear problem we present solutions assuming that the internal layering is oriented orthogonal to the surfaces of the shear layer initially. For high values of the ratio of the normal-to the shear viscosity the deformation concentrates in thin bands around to the layer surfaces. The effect of couple stresses on the evolution of folds in layered structures is also investigated. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We analyze folding phenomena in finely layered viscoelastic rock. Fine is meant in the sense that the thickness of each layer is considerably smaller than characteristic structural dimensions. For this purpose we derive constitutive relations and apply a computational simulation scheme (a finite-element based particle advection scheme; see MORESI et al., 2001) suitable for problems involving very large deformations of layered viscous and viscoelastic rocks. An algorithm for the time integration of the governing equations as well as details of the finite-element implementation is also given. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered plate. The domain is compressed along the layer axis by prescribing velocities along the sides. First, for the viscous limit we consider the response to a series of harmonic perturbations of the director orientation. The Fourier spectra of the initial folding velocity are compared for different viscosity ratios. Turning to the nonlinear regime we analyze viscoelastic folding histories up to 40% shortening. The effect of layering manifests itself in that appreciable buckling instabilities are obtained at much lower viscosity ratios (1:10) as is required for the buckling of isotropic plates (1:500). The wavelength induced by the initial harmonic perturbation of the director orientation seems to be persistent. In the section of the parameter space considered here elasticity seems to delay or inhibit the occurrence of a second, larger wavelength. Finally, in a linear instability analysis we undertake a brief excursion into the potential role of couple stresses on the folding process. The linear instability analysis also provides insight into the expected modes of deformation at the onset of instability, and the different regimes of behavior one might expect to observe.
Resumo:
The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Muhlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector - the director - of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8] and secondly to study the numerical performance of Eulerian (Fastflo)- and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.
Resumo:
We illustrate the flow behaviour of fluids with isotropic and anisotropic microstructure (internal length, layering with bending stiffness) by means of numerical simulations of silo discharge and flow alignment in simple shear. The Cosserat theory is used to provide an internal length in the constitutive model through bending stiffness to describe isotropic microstructure and this theory is coupled to a director theory to add specific orientation of grains to describe anisotropic microstructure. The numerical solution is based on an implicit form of the Material Point Method developed by Moresi et al. [1].
Resumo:
The field of contemporary youth-specific theatre in Australia is one of change and, in some cases, anxiety. While Drama Studies continue to grow in popularity in schools, previously conventional developmental paradigms have become less mandatory for theatre, for, by, and about young people outside the school context. Instead, 'new generation' approaches in youth-specific performance are placing greater value on young people's own preferences in cultural activity. Yet this development is being tempered and further complicated by a cultural 'generationalism', particularly in larger arts organization as the youth sector becomes a more integral part of marketing strategies for the future. The resulting ambiguity in the representation, value, and positioning of young people and youth-specific arts in Australia's theatre industry is considered by focusing on Magpie2, a former youth-specific company attached to the State Theatre Company of South Australia. Magpie2 ceased operation in 1998 after experimenting with a 'new generation' approach to theatre for young people in the State Theatre realm. Both the artistic policy of Magpie2 Director, Benedict Andrews, and the critical reception of his two productions in 1997, Future Tense and Features of Blown Youth, demonstrate how competing systems of cultural value characterize the field of youth-specific theatre in Australia.