4 resultados para TECHNOLOGICAL CHANGE

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article considers questions of technological change, innovation, and communication from a disability perspective. Using a critical social perspective on disability, we offer an Australian case study to analyse disability in national telecommunications policy. In doing so, we critique the systemic lack of incorporation of disability in national visions, policies, and programmes. Accordingly, we argue for a cohesive, and genuine commitment to incorporating disability considerations in all areas of information and communication technology policy and scholarship.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we propose a range of dynamic data envelopment analysis (DEA) models which allow information on costs of adjustment to be incorporated into the DEA framework. We first specify a basic dynamic DEA model predicated on a number or simplifying assumptions. We then outline a number of extensions to this model to accommodate asymmetric adjustment costs, non-static output quantities, non-static input prices, and non-static costs of adjustment, technological change, quasi-fixed inputs and investment budget constraints. The new dynamic DEA models provide valuable extra information relative to the standard static DEA models-they identify an optimal path of adjustment for the input quantities, and provide a measure of the potential cost savings that result from recognising the costs of adjusting input quantities towards the optimal point. The new models are illustrated using data relating to a chain of 35 retail department stores in Chile. The empirical results illustrate the wealth of information that can be derived from these models, and clearly show that static models overstate potential cost savings when adjustment costs are non-zero.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Continuing Professional Development (CPD) is seen as a vital part of a professional engineer’s career, by professional engineering institutions as well as individual engineers. Factors such as ever-changing workforce requirements and rapid technological change have resulted in engineers no longer being able to rely just on the skills they learnt at university or can pick up on the job; they must undergo a structured professional development with clear objectives to develop further professional knowledge, values and skills. This paper presents a course developed for students undertaking a Master of Engineering or Master of Project Management at the University of Queensland. This course was specifically designed to help students plan their continuing professional development, while developing professional skills such as communication, ethical reasoning, critical judgement and the need for sustainable development. The course utilised a work integrated learning pedagogy applied within a formal learning environment, and followed the competency based chartered membership program of Engineers Australia, the peak professional body of engineers in Australia. The course was developed and analysed using an action learning approach. The main research question was “Can extra teaching and learning activities be developed that will simulate workplace learning?” The students continually assessed and reflected upon their current competencies, skills and abilities, and planed for the future attainment of specific competencies which they identified as important to their future careers. Various evaluation methods, including surveys before and after the course, were used to evaluate the action learning intervention. It was found that the assessment developed for the course was one of the most important factors, not only in driving student learning, as is widely accepted, but also in changing the students’ understandings and acceptance of the need for continuous professional development. The students also felt that the knowledge, values and skills they developed would be beneficial for their future careers, as they were developed within the context of their own professional development, rather than to just get through the course. © 2005, American Society for Engineering Education