4 resultados para TDT
em University of Queensland eSpace - Australia
Resumo:
Aim To evaluate whether the T1D susceptibility locus on chromosome 16q contributes to the genetic susceptibility to T1D in Russian patients. Method Thirteen microsatellite markers, spanning a 47-centimorgan genomic region on 16q22-q24 were evaluated for linkage to T1D in 98 Russian multiplex families. Multipoint logarithm of odds (LOD) ratio (MLS) and nonparametric LOD (NPL) values were computed for each marker, using GENEHUNTER 2.1 software. Four microsatellites (D16S422, D16S504, D16S3037, and D16S3098) and 6 biallelic markers in 2 positional candidate genes, ICSBP1 and NQO1, were additionally tested for association with T1D in 114 simplex families, using transmission disequilibrium test (TDT). Results A peak of linkage (MLS = 1.35, NPL = 0.91) was shown for marker D16S750, but this was not significant (P = 0.18). The subsequent linkage analysis in the subset of 46 multiplex families carrying a common risk HLA-DR4 haplotype increased peak MLS and NPL values to 1.77 and 1.22, respectively, but showed no significant linkage (P = 0.11) to T1D in the 16q22-q24 genomic region. TDT analysis failed to find significant association between these markers and disease, even after the conditioning for the predisposing HLA-DR4 haplotype. Conclusion Our results did not support the evidence for the susceptibility locus to T1D on chromosome 16q22-24 in the Russian family data set. The lack of association could reflect genetic heterogeneity of type 1 diabetes in diverse ethnic groups.
Resumo:
The progesterone receptor (PR) is a candidate gene for the development of endometriosis, a complex disease with strong hormonal features, common in women of reproductive age. We typed the 306 base pair Alu insertion (AluIns) polymorphism in intron G of PR in 101 individuals, estimated linkage disequilibrium (LD) between five single-nucleotide polymorphisms (SNPs) across the PR locus in 980 Australian triads (endometriosis case and two parents) and used transmission disequilibrium testing (TDT) for association with endometriosis. The five SNPs showed strong pairwise LD, and the AluIns was highly correlated with proximal SNPs rs1042839 ({Delta}2 = 0.877, D9 = 1.00, P < 0.0001) and rs500760 ({Delta}2 = 0.438, D9 = 0.942, P < 0.0001). TDT showed weak evidence of allelic association between endometriosis and rs500760 (P = 0.027) but not in the expected direction. We identified a common susceptibility haplotype GGGCA across the five SNPs (P = 0.0167) in the whole sample, but likelihood ratio testing of haplotype transmission and non-transmission of the AluIns and flanking SNPs showed no significant pattern. Further, analysis of our results pooled with those from two previous studies suggested that neither the T2 allele of the AluIns nor the T1/T2 genotype was associated with endometriosis.
Resumo:
A disappointing feature of conventional methods for detecting association between DNA variation and a phenotype of interest is that they tell us little about the hidden pattern of linkage disequilibrium (LD) with the functional variant that is actually responsible for the association. This limitation applies to case-control studies and also to the transmission/disequilibrium test (TDT) and other family-based association methods. Here we present a fresh perspective on genetic association based on two novel concepts called 'LD squares' and 'equi-risk alleles'. These describe and characterize the different patterns of gametic LD which underlie genetic association. These concepts lead to a general principle - the Equi-Risk Allele Segregation Principle - which captures the way in which underlying LD patterns affect the transmission patterns of genetic variants associated with a phenotype. This provides a basis for distinguishing the hidden LD patterns and might help to locate the functional variants responsible for the association.
Resumo:
The development of TDR for measurement of soil water content and electrical conductivity has resulted in a large shift in measurement methods for a breadth of soil and hydrological characterization efforts. TDR has also opened new possibilities for soil and plant research. Five examples show how TDR has enhanced our ability to conduct our soil- and plant-water research. (i) Oxygen is necessary for healthy root growth and plant development but quantitative evaluation of the factors controlling oxygen supply in soil depends on knowledge of the soil water content by TDR. With water content information we have modeled successfully some impact of tillage methods on oxygen supply to roots and their growth response. (ii) For field assessment of soil mechanical properties influencing crop growth, water content capability was added to two portable soil strength measuring devices; (a) A TDT (Time Domain Transmittivity)-equipped soil cone penetrometer was used to evaluate seasonal soil strengthwater content relationships. In conventional tillage systems the relationships are dynamic and achieve the more stable no-tillage relationships only relatively late in each growing season; (b) A small TDR transmission line was added to a modified sheargraph that allowed shear strength and water content to be measured simultaneously on the same sample. In addition, the conventional graphing procedure for data acquisition was converted to datalogging using strain gauges. Data acquisition rate was improved by more than a factor of three with improved data quality. (iii) How do drought tolerant plants maintain leaf water content? Non-destructive measurement of TDR water content using a flat serpentine triple wire transmission line replaces more lengthy procedures of measuring relative water content. Two challenges remain: drought-stressed leaves alter salt content, changing electrical conductivity, and drought induced changes in leaf morphology affect TDR measurements. (iv) Remote radar signals are reflected from within the first 2 cm of soil. Appropriate calibration of radar imaging for soil water content can be achieved by a parallel pair of blades separated by 8 cm, reaching 1.7 cm into soil and forming a 20 cm TDR transmission line. The correlation between apparent relative permittivity from TDR and synthetic aperture radar (SAR) backscatter coefficient was 0.57 from an airborne flyover. These five examples highlight the diversity in the application of TDR in soil and plant research.