3 resultados para Systematic errors
em University of Queensland eSpace - Australia
Resumo:
We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS-2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is sigma similar to 0.03 for redshifts less than 0.55 and worsens at higher redshift (similar to 0.06 for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.
Resumo:
Formal specifications can precisely and unambiguously define the required behavior of a software system or component. However, formal specifications are complex artifacts that need to be verified to ensure that they are consistent, complete, and validated against the requirements. Specification testing or animation tools exist to assist with this by allowing the specifier to interpret or execute the specification. However, currently little is known about how to do this effectively. This article presents a framework and tool support for the systematic testing of formal, model-based specifications. Several important generic properties that should be satisfied by model-based specifications are first identified. Following the idea of mutation analysis, we then use variants or mutants of the specification to check that these properties are satisfied. The framework also allows the specifier to test application-specific properties. All properties are tested for a range of states that are defined by the tester in the form of a testgraph, which is a directed graph that partially models the states and transitions of the specification being tested. Tool support is provided for the generation of the mutants, for automatically traversing the testgraph and executing the test cases, and for reporting any errors. The framework is demonstrated on a small specification and its application to three larger specifications is discussed. Experience indicates that the framework can be used effectively to test small to medium-sized specifications and that it can reveal a significant number of problems in these specifications.
Resumo:
Data on the occurrence of species are widely used to inform the design of reserve networks. These data contain commission errors (when a species is mistakenly thought to be present) and omission errors (when a species is mistakenly thought to be absent), and the rates of the two types of error are inversely related. Point locality data can minimize commission errors, but those obtained from museum collections are generally sparse, suffer from substantial spatial bias and contain large omission errors. Geographic ranges generate large commission errors because they assume homogenous species distributions. Predicted distribution data make explicit inferences on species occurrence and their commission and omission errors depend on model structure, on the omission of variables that determine species distribution and on data resolution. Omission errors lead to identifying networks of areas for conservation action that are smaller than required and centred on known species occurrences, thus affecting the comprehensiveness, representativeness and efficiency of selected areas. Commission errors lead to selecting areas not relevant to conservation, thus affecting the representativeness and adequacy of reserve networks. Conservation plans should include an estimation of commission and omission errors in underlying species data and explicitly use this information to influence conservation planning outcomes.