3 resultados para Synthetic methods

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of MgA1 layered double hydroxide (LDH) from physically mixed MgO and Al2O3 oxides upon hydrothermal treatment has been extensively investigated, and a formation mechanism has been proposed. We observed that the formation of LDH from the oxide mixture occurs upon heating at 110 degreesC. In general, LDH is the major component while the minor phases are mainly determined by the initial pH of the oxide suspension as well as the MgO/Al2O3 ratio. The neutrality in the initial suspension results in a minor Mg(OH)(2) as the impure phase, while the alkalinity in the suspension keeps some MgO unreacted throughout the whole hydrothermal treatment. We suggest that MgO and Al2O3 be hydrated into Mg(OH)(2) and Al(OH)(3), respectively, in the initial stage for all samples. We further Suggest that in the neutral condition Mg(OH)2 be quickly dissociated to Mg2+ and OH- which then deposit on the surface of Al(OH)(3)/Al2O3 to form a M-Al pre-LDH material. Al(OH)(4)(-), ionized from Al(OH)(3) in the basic solution, deposits on the surface of Mg(OH)(2)/MgO to result in a similar MgAl pre-LDH material. Such a pre-LDH material is then well crystallized upon continuous heating via the diffusion of metal ions in the solid lattice. Such a dissociation-deposition-diffusion mechanism via two pathways has been supported by the phase composition, morphological features of crystallites, and [Mg]/[Al] ratios on the crystallite surface. and presumably applied to the general formation of LDHs with various synthetic methods. Such as coprecipitation, homogeneous preparation, and reconstruction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The inherent self-recognition properties of DNA have led to its use as a scaffold for various nanotechnology self-assembly applications, with macromolecular complexes, metallic and semiconducting nanoparticles, proteins, inter alia, being assembled onto a designed DNA scaffold. Such structures may typically comprise a number of DNA molecules organized into macromolecules. Many studies have used synthetic methods to produce the constituent DNA molecules, but this typically constrains the molecules to be no longer than around 100 base pairs (30 nm). However, applications that require larger self-assembling DNA complexes, several tens of nanometers or more, need to be generated by other techniques. Here, we present a generic technique to generate large linear, branched, and/or circular DNA macromolecular complexes. The effectiveness of this technique is demonstrated here by the use of Lambda Bacteriophage DNA as a template to generate single- and double-branched DNA structures approximately 120 nm in size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current Physiologically based pharmacokinetic (PBPK) models are inductive. We present an additional, different approach that is based on the synthetic rather than the inductive approach to modeling and simulation. It relies on object-oriented programming A model of the referent system in its experimental context is synthesized by assembling objects that represent components such as molecules, cells, aspects of tissue architecture, catheters, etc. The single pass perfused rat liver has been well described in evaluating hepatic drug pharmacokinetics (PK) and is the system on which we focus. In silico experiments begin with administration of objects representing actual compounds. Data are collected in a manner analogous to that in the referent PK experiments. The synthetic modeling method allows for recognition and representation of discrete event and discrete time processes, as well as heterogeneity in organization, function, and spatial effects. An application is developed for sucrose and antipyrine, administered separately and together PBPK modeling has made extensive progress in characterizing abstracted PK properties but this has also been its limitation. Now, other important questions and possible extensions emerge. How are these PK properties and the observed behaviors generated? The inherent heuristic limitations of traditional models have hindered getting meaningful, detailed answers to such questions. Synthetic models of the type described here are specifically intended to help answer such questions. Analogous to wet-lab experimental models, they retain their applicability even when broken apart into sub-components. Having and applying this new class of models along with traditional PK modeling methods is expected to increase the productivity of pharmaceutical research at all levels that make use of modeling and simulation.