8 resultados para Surfaces in the 3-dimensional Sphere

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equilibrium adsorption data of nitrogen on a series of nongraphitized carbon blacks and nonporous silica at 77 K were analyzed by means of classical density functional theory to determine the solid-fluid potential. The behavior of this potential profile at large distance is particularly considered. The analysis of nitrogen adsorption isotherms seems to indicate that the adsorption in the first molecular layer is localized and controlled mainly by short-range forces due to the surface roughness, crystalline defects, and functional groups. At distances larger than approximately 1.3-1.5 molecular diameters, the adsorption is nonlocalized and appears as a thickening of the adsorbed film with increasing bulk pressure in a relatively weak adsorption potential field. It has been found that the asymptotic decay of the potential obeys the power law with the exponent being -3 for carbon blacks and -4 for silica surface, which signifies that in the latter case the adsorption potential is mainly exerted by surface oxygen atoms. In all cases, the absolute value of the solid-fluid potential is much smaller than that predicted by the Lennard-Jones pair potential with commonly used solid-fluid molecular parameters. The effect of surface heterogeneity on the heat of adsorption is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shale-normalised rare earth element and yttrium (REE + Y) patterns for siderite-jasper couples in a banded iron formation of the 3.45 Ga Panorama Formation, Warrawoona Group, eastern Pilbara Craton, display distinct positive Y and Eu anomalies and weak positive La and Gd anomalies, combined with depleted light REE relative to middle and heavy REE. Ambient seawater and hydrothermal fluids are identified as major sources of REE + Y for the BIF. In the case of siderites, strong correlations between incompatible trace elements and trace element ratios diagnostic of seawater indicate variable input from a terrigenous source (e.g. volcanic ash). We propose a volcanic caldera setting as a likely depositional environment where jasper and siderite precipitated as alternating bands in response to episodic changes in ambient water chemistry. The episodicity was either driven by fluctuations in the intensity of hydrothermal activity or changes in magma chamber activity, which in turn controlled relative sea level. In this context, precipitation of jasper probably reflects background conditions during which seawater was saturated in silica due to evaporative conditions, while siderites were deposited most likely during intermittent periods of enhanced volcanic activity when seawater was more acidic due to the release of exhalative phases (e.g. CO2). © 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, 3-D Lattice Solid Model (LSMearth or LSM) was extended by introducing particle-scale rotation. In the new model, for each 3-D particle, we introduce six degrees of freedom: Three for translational motion, and three for orientation. Six kinds of relative motions are permitted between two neighboring particles, and six interactions are transferred, i.e., radial, two shearing forces, twisting and two bending torques. By using quaternion algebra, relative rotation between two particles is decomposed into two sequence-independent rotations such that all interactions due to the relative motions between interactive rigid bodies can be uniquely decided. After incorporating this mechanism and introducing bond breaking under torsion and bending into the LSM, several tests on 2-D and 3-D rock failure under uni-axial compression are carried out. Compared with the simulations without the single particle rotational mechanism, the new simulation results match more closely experimental results of rock fracture and hence, are encouraging. Since more parameters are introduced, an approach for choosing the new parameters is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, a role for agouti signalling protein (ASIP) in human pigmentation has not been well characterized. It is known that agouti plays a pivotal role in the pigment switch from the dark eumelanin to the light pheomelanin in the mouse. However, because humans do not have an agouti banded hair pattern, its role in human pigmentation has been questioned. We previously identified a single polymorphism in the 3'-untranslated region (UTR) of ASIP that was found at a higher frequency in African-Americans compared with other population groups. To compare allele frequencies between European-Australians and indigenous Australians, the g.8818A -> G polymorphism was genotyped. Significant differences were seen in allele frequencies between these groups (P < 0.0001) with carriage of the G allele highest in Australian Aborigines. In the Caucasian sample set a strong association was observed between the G allele and dark hair colour (P = 0.004) (odds ratio 4.6; 95% CI 1.4-15.27). The functional consequences of this polymorphism are not known but it was postulated that it might result in message instability and premature degradation of the transcript. To test this hypothesis, ASIP mRNA levels were quantified in melanocytes carrying the variant and non-variant alleles. Using quantitative real-time polymerase chain reaction the mean ASIP mRNA ratio of the AA genotype to the AG genotype was 12 (P < 0.05). This study suggests that the 3'-UTR polymorphism results in decreased levels of ASIP and therefore less pheomelanin production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adiponectin is a secreted, multimeric protein with insulin-sensitizing, antiatherogenic, and antiinflammatory properties. Serum adiponectin consists of trimer, hexamer, and larger high-molecular-weight (HMW) multimers, and these HMW multimers appear to be the more bioactive forms. Multimer composition of adiponectin appears to be regulated; however, the molecular mechanisms involved are unknown. We hypothesize that regulation of adiponectin multimerization and secretion occurs via changes in posttranslational modifications (PTMs). Although a structural role for intertrimer disulfide bonds in the formation of hexamers and HMW multimers is established, the role of other PTMs is unknown. PTMs identified in murine and bovine adiponectin include hydroxylation of multiple conserved proline and lysine residues and glycosylation of hydroxylysines. By mass spectrometry, we confirmed the presence of these PTMs in human adiponectin and identified three additional hydroxylations on Pro71, Pro76, and Pro95. We also investigated the role of the five modified lysines in multimer formation and secretion of recombinant human adiponectin expressed in mammalian cell lines. Mutation of modified lysines in the collagenous domain prevented formation of HMW multimers, whereas a pharmacological inhibitor of prolyl- and lysyl-hydroxylases, 2,2'-dipyridyl, inhibited formation of hexamers and HMW multimers. Bacterially expressed human adiponectin displayed a complete lack of differentially modified isoforms and failed to form bona fide trimers and larger multimers. Finally, glucose-induced increases in HMW multimer production from human adipose explants correlated with changes in the two-dimensional electrophoresis profile of adiponectin isoforms. Collectively, these data suggest that adiponectin multimer composition is affected by changes in PTM in response to physiological factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phantom that can be used for mapping geometric distortion in magnetic resonance imaging (MRI) is described. This phantom provides an array of densely distributed control points in three-dimensional (3D) space. These points form the basis of a comprehensive measurement method to correct for geometric distortion in MR images arising principally from gradient field non-linearity and magnet field inhomogeneity. The phantom was designed based on the concept that a point in space can be defined using three orthogonal planes. This novel design approach allows for as many control points as desired. Employing this novel design, a highly accurate method has been developed that enables the positions of the control points to be measured to sub-voxel accuracy. The phantom described in this paper was constructed to fit into a body coil of a MRI scanner, (external dimensions of the phantom were: 310 mm x 310 mm x 310 mm), and it contained 10,830 control points. With this phantom, the mean errors in the measured coordinates of the control points were on the order of 0.1 mm or less, which were less than one tenth of the voxel's dimensions of the phantom image. The calculated three-dimensional distortion map, i.e., the differences between the image positions and true positions of the control points, can then be used to compensate for geometric distortion for a full image restoration. It is anticipated that this novel method will have an impact on the applicability of MRI in both clinical and research settings. especially in areas where geometric accuracy is highly required, such as in MR neuro-imaging. (C) 2004 Elsevier Inc. All rights reserved.