8 resultados para Surface energy

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stickiness is a common problem encountered in food handling and processing, and also during consumption. Stickiness is observed as adhesion of the food to processing equipment surfaces or cohesion within the food particulate or mass. An important operation where this undesirable behavior of food is manifested is drying. This occurs particularly during drying of high-sugar and high-fat foods. To date, the stickiness of foods during drying or dried powder has been investigated in relation to their viscous and glass transition properties. The importance of contact surface energy of the equipment has been ignored in many analyses, despite the fact that some drying operations have reported using low-energy contact surfaces in drying equipment to avoid the problems caused by stickiness. This review discusses the fundamentals of adhesion and cohesion mechanisms and relates these phenomena to drying and dried products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the area of dry particle breakage, Discrete Element Method (DEM) simulations have been widely used to analyse the sensitivity of various physical parameters to the behaviour of agglomerates during breakage. This paper looks at the effect of agglomerate shape and structure on the mechanisms and extent of breakage of dry agglomerates under compressive load using DEM simulations. In the simulations, a spherical-shaped agglomerate produced within the DEM code is compared with an irregularly shaped agglomerate, whose structure is that of an actual granule that was characterised with X-ray microtomography (muCT). Both agglomerates have identical particle size distribution, coordination number and surface energy values, with only the agglomerate shape and structure differing between the two. The work here details the breakage behaviour with a number of traditional DEM output parameters (i.e., contact/cluster distributions) with showing vastly different behaviour between the two agglomerates. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The defect effect on hydrogen adsorption on single-walled carbon nanotubes (SWNTs) has been studied by using extensive molecular dynamics simulations and density functional theory (DFT) calculations. It indicates that the defects created on the exterior wall of the SWNTs by bombarding the tube wall with carbon atoms and C-2 dimers at a collision energy of 20 eV can enhance the hydrogen adsorption potential of the SWNTs substantially. The average adsorption energy for a H-2 molecule adsorbed on the exterior wall of a defected (10,10) SWNT is similar to 150 meV, while that for a H-2 molecule adsorbed on the exterior wall of a perfect (10,10) SWNT is similar to 104 meV. The H-2 sticking coefficient is very sensitive to temperature, and has a maximum value around 70 to 90 K. The electron density contours, the local density of states, and the electron transfers obtained from the DFT calculations clearly indicate that the H-2 molecules are all physisorbed on the SWNTs. At temperatures above 200 K, most of the H-2 molecules adsorbed on the perfect SWNT are soon desorbed, but the H-2 molecules can still remain on the defected SWNTs at 300 K. The detailed processes of H-2 molecules adsorbing on and desorbing from the (10,10) SWNTs are demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Without introduction of any stabilizer, the mesoporous nanocrystalline zirconia with lamellar and MSU structure was obtained via solid state reaction coupled with surfactant templating method. The phase, surface area and pore structure of zirconia prepared with this novel method could be designed, tailored and controlled by varying synthesis parameters. The phase transformation was controlled by particle size. The mesostructure possesses nanocrystalline pore wall, which renders it more thermally stable than amorphous framework. The results suggest strongly that in solid state synthesis system mesostructure formation still follow the supramolecular self-assembly mechanism. The lamellar and reverse hexagonal structure could be transformed at different OH-/Zr molar ratios in order to sustain the low surface energy of the mesophases. The lamellar structure was preferred at higher OH-/Zr molar ratios but reverse hexagonal was at low ratios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultem 1000 polyetherimide films prepared by cast-evaporating technique were covered with a 1H,1H,2H-tridecafluoro-oct-1-ene (PFO) plasma-polymerized layer. The effects of the plasma exposure time on the surface composition were studied by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and surface energy analysis. The surface topography of the plasma layer was deduced from scanning electron microscopy. The F/C ratio for plasma-polymerized PFO under the input RF power of 50 W can be as high as 1.30 for 480 s and similar to 0.4-2 at % of oxygen was detected, resulting from the reaction of long-lived radicals in the plasma polymer with atmospheric oxygen. The plasma deposition of fluorocarbon coating from plasma PFO reduces the surface energy from 46 to 18.3 mJ m(-2). (c) 2006 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Van der Waals forces often dominate interactions and adhesion between fine particles and, in turn, decisively influence the bulk behaviour of powders. However, so far there is no effective means to characterize the adhesive behaviour of such particles. A complication is that most powder particles have rough surfaces, and it is the asperities on the surfaces that touch, confounding the actual surface that is in contact. Conventional approaches using surface energy provide limited information regarding adhesion, and pull-off forces measured through atomic force microscope (AFM) are highly variable and difficult to interpret. In this paper we develop a model which combines the Rumpf-Rabinovich and the JKR-DMT theories to account simultaneously for the effects of surface roughness and deformation on adhesion. This is applied to a 'characteristic asperity' which may be easily obtained from AFM measurements. The concept of adhesiveness, a material property reflecting the influences of elastic deformability, surface roughness, and interfacial surface energy, is introduced as an efficient and quantitative measure of the adhering tendency of a powder. Furthermore, a novel concept of specific adhesiveness is proposed as a convenient tool for characterizing and benchmarking solid materials. This paper provides an example to illustrate the use of the proposed theories. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiple emission peaks have been observed from surface passivated PbS nanocrystals displaying strong quantum confinement. The emission spectra are shown to be strongly dependent on the excited-state parity. We also find that intraband energy relaxation from initial states excited far above the band-edge is nearly three orders of magnitude slower than that found in other nanocrystal quantum dots, providing evidence of inefficient energy relaxation via phonon emission. The initial-state parity dependence of the photoluminescent emission properties suggests that energy relaxation from the higher excited states occurs via a radiative cascade, analogous to energy relaxation in atomic systems. Such radiative cascade emission is possible from ideal zero-dimensional semiconductors, where electronic transitions can be decoupled from phonon modes.