7 resultados para Surface concentration

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) melt processed disks and solvent cast films were modified by graft co-polyinerization with acrylic acid (AAc) in methanol solution at ambient temperature using gamma irradiation (dose rate of 4.5 kGy/h). To assess the presence of carboxylic acid groups on the surface, reaction with pentafluorophenol was performed prior to X-ray photoelectron spectroscopy analysis. The grafting yield for all samples increased with monomer concentration (2-15%), and for the solvent cast films, it also increased with dose (2-9 kGy). However, the grafting yield of the melt processed disks was largely independent of the radiation dose (2-8 kGy). Toluidine blue was used to stain the modified materials facilitating, visual information about the extent of carboxylic acid functionalization and depth penetration of the grafted copolymer. Covalent linking of glucosamine to the functionalized surface was achieved using carbodimide chemistry verifying that the modified substrates are suitable for biomolecule attachment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The leaching of elements from the surface of charged fly ash particles is known to be an unsteady process. The mass transfer resistance provided by the diffuse double layer has been quantified as one of the reasons for this delayed leaching. In this work, a model based on mass transfer principles for predicting the concentration of calcium hydroxide in the diffuse double layer is presented. The significant difference between predicted calcium hydroxide concentration and the experimentally measured is explained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pesticides in soil are subject to a number of processes that result in transformation and biodegradation, sorption to and desorption from soil components, and diffusion and leaching. Pesticides leaching through a soil profile will be exposed to changing environmental conditions as different horizons with distinct physical, chemical and biological properties are encountered. The many ways in which soil properties influence pesticide retention and degradation need to be addressed to allow accurate predictions of environmental fate and the potential for groundwater pollution. Degradation and sorption processes were investigated in a long-term (100 days) study of the chloroacetanilide herbicide, acetochlor. Soil cores were collected from a clay soil profile and samples taken from 0-30cm (surface), 1.0-1.3m (mid) and 2.7-3.0m (deep) and treated with acetochlor (2.5, 1.25, 0.67 mu g acetochlor g(-1) dry wt soil, respectively). In sterile and non-sterile conditions, acetochlor concentration in the aqueous phase declined rapidly from the surface and subsoil layers, predominantly through nonextractable residue (NER) formation on soil surfaces, but also through biodegradation and biotic transformation. Abiotic transformation was also evident in the sterile soils. Several metabolites were produced, including acetochlor-ethane sulphonic acid and acetochlor-oxanilic acid. Transformation was principally microbial in origin, as shown by the differences between non-sterile and sterile soils. NER formation increased rapidly over the first 21 days in all soils and was mainly associated with the macroaggregate (> 2000 mu m diameter) size fractions. It is likely that acetochlor is incorporated into the macroaggregates through oxidative coupling, as humification of particulate organic matter progresses. The dissipation (ie total loss of acetochlor) half-life values were 9.3 (surface), 12.3 (mid) and 12.6 days (deep) in the non-sterile soils, compared with 20.9 [surface], 23.5 [mid], and 24 days [deep] in the sterile soils, demonstrating the importance of microbially driven processes in the rapid dissipation of acetochlor in soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In contrast to the well-established relationship between cadherins and the actin cytoskeleton, the potential link between cadherins and microtubules (MTs) has been less extensively investigated. We now identify a pool of MTs that extend radially into cell-cell contacts and are inhibited by manoeuvres that block the dynamic activity of MT plus-ends (e.g. in the presence of low concentrations of nocodazole and following expression of a CLIP-170 mutant). Blocking dynamic MTs perturbed the ability of cells to concentrate and accumulate E-cadherin at cell-cell contacts, as assessed both by quantitative immunofluorescence microscopy and fluorescence recovery after photobleaching (FRAP) analysis, but did not affect either transport of E-cadherin to the plasma membrane or the amount of E-cadherin expressed at the cell surface. This indicated that dynamic MTs allow cells to concentrate E-cadherin at cell-cell contacts by regulating the regional distribution of E-cadherin once it reaches the cell surface. Importantly, dynamic MTs were necessary for myosin II to accumulate and be activated at cadherin adhesive contacts, a mechanism that supports the focal accumulation of E-cadherin. We propose that this population of MTs represents a novel form of cadherin-MT cooperation, where cadherin adhesions recruit dynamic MTs that, in turn, support the local concentration of cadherin molecules by regulating myosin II activity at cell-cell contacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integrated chemical-biological degradation combining advanced oxidation by UV/H2O2 followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H2O2/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Thames Estuary, UK, and the Brisbane River, Australia, are comparable in size and catchment area. Both are representative of the large and growing number of the world's estuaries associated with major cities. Principle differences between the two systems relate to climate and human population pressures. In order to assess the potential phytotoxic impact of herbicide residues in the estuaries, surface waters were analysed with a PAM fluorometry-based bioassay that employs the photosynthetic efficiency (photosystem II quantum yield) of laboratory cultured microalgae, as an endpoint measure of phytotoxicity. In addition, surface waters were chemically analysed for a limited number of herbicides. Diuron atrazine and simazine were detected in both systems at comparable concentrations. In contrast, bioassay results revealed that whilst detected herbicides accounted for the observed phytotoxicity of Brisbane River extracts with great accuracy, they consistently explained only around 50% of the phytotoxicity induced by Thames Estuary extracts. Unaccounted for phytotoxicity in Thames surface waters is indicative of unidentified phytotoxins. The greatest phytotoxic response was measured at Charing Cross, Thames Estuary, and corresponded to a diuron equivalent concentration of 180 ng L-1. The study employs relative potencies (REP) of PSII impacting herbicides and demonstrates that chemical analysis alone is prone to omission of valuable information. Results of the study provide support for the incorporation of bioassays into routine monitoring programs where bioassay data may be used to predict and verify chemical contamination data, alert to unidentified compounds and provide the user with information regarding cumulative toxicity of complex mixtures. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach to the pinch region, the viscoelastic fluids all exhibit the same global necking behavior that is observed for a Newtonian fluid of equivalent shear viscosity. For these low viscosity dilute polymer solutions, inertial and capillary forces form the dominant balance in this potential flow regime, with the viscous force being negligible. The approach to the pinch point, which corresponds to the point of rupture for a Newtonian fluid, is extremely rapid in such solutions, with the sudden increase in curvature producing very large extension rates at this location. In this region the polymer molecules are significantly extended, causing a localized increase in the elastic stresses, which grow to balance the capillary pressure. This prevents the necked fluid from breaking off, as would occur in the equivalent Newtonian fluid. Alternatively, a cylindrical filament forms in which elastic stresses and capillary pressure balance, and the radius decreases exponentially with time. A (0+1)-dimensional finitely extensible nonlinear elastic dumbbell theory incorporating inertial, capillary, and elastic stresses is able to capture the basic features of the experimental observations. Before the critical "pinch time" t(p), an inertial-capillary balance leads to the expected 2/3-power scaling of the minimum radius with time: R-min similar to(t(p)-t)(2/3). However, the diverging deformation rate results in large molecular deformations and rapid crossover to an elastocapillary balance for times t>t(p). In this region, the filament radius decreases exponentially with time R-min similar to exp[(t(p)-t)/lambda(1)], where lambda(1) is the characteristic time constant of the polymer molecules. Measurements of the relaxation times of polyethylene oxide solutions of varying concentrations and molecular weights obtained from high speed imaging of the rate of change of filament radius are significantly higher than the relaxation times estimated from Rouse-Zimm theory, even though the solutions are within the dilute concentration region as determined using intrinsic viscosity measurements. The effective relaxation times exhibit the expected scaling with molecular weight but with an additional dependence on the concentration of the polymer in solution. This is consistent with the expectation that the polymer molecules are in fact highly extended during the approach to the pinch region (i.e., prior to the elastocapillary filament thinning regime) and subsequently as the filament is formed they are further extended by filament stretching at a constant rate until full extension of the polymer coil is achieved. In this highly extended state, intermolecular interactions become significant, producing relaxation times far above theoretical predictions for dilute polymer solutions under equilibrium conditions. (C) 2006 American Institute of Physics