18 resultados para Supersonic wind tunnels.
em University of Queensland eSpace - Australia
Resumo:
The paper presents methods for measurement of convective heat transfer distributions in a cold flow, supersonic blowdown wind tunnel. The techniques involve use of the difference between model surface temperature and adiabatic wall temperature as the driving temperature difference for heat transfer and no active heating or cooling of the test gas or model is required. Thermochromic liquid crystals are used for surface temperature indication and results presented from experiments in a Mach 3 flow indicate that measurements of the surface heat transfer distribution under swept shock wave boundary layer interactions can be made. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The development of new methods of producing hypersonic wind-tunnel flows at increasing velocities during the last few decades is reviewed with attention to airbreathing propulsion, hypervelocity aerodynamics and superorbital aerodynamics. The role of chemical reactions in these flows leads to use of a binary scaling simulation parameter, which can be related to the Reynolds number, and which demands that smaller wind tunnels require higher reservoir pressure levels for simulation of flight phenomena. The use of combustion heated vitiated wind tunnels for propulsive research is discussed, as well as the use of reflected shock tunnels for the same purpose. A flight experiment validating shock-tunnel results is described, and relevant developments in shock tunnel instrumentation are outlined. The use of shock tunnels for hypervelocity testing is reviewed, noting the role of driver gas contamination in determining test time, and presenting examples of air dissociation effects on model flows. Extending the hypervelocity testing range into the superorbital regime with useful test times is seen to be possible by use of expansion tube/tunnels with a free piston driver.
Resumo:
The supersonic flow around a cylindrical body has been studied using two optical techniques. For both sets of measurements, the cylinder was mounted from the side of the tunnel, allowing investigation of the bow shock region as well as in the wake. A new technique, laser-enhanced ionization flow tagging, was used for streamwise velocity determinations behind the body. From these measurements, it was found that the downstream velocity outside the wake was (1.90 +/- 0.06) km/s, whereas inside the wake the velocity was about 0-500 m/s in the upstream direction. Planar laser induced fluorescence of nitric oxide was employed for temperature determinations. It was established that the freestream temperature was (2120 +/- 100) K, decreasing to around (1550 +/- 400) K in the wake.
The polar ionosphere at Zhongshan Station on May 11, 1999, the day the solar wind almost disappeared
Resumo:
The solar wind almost disappeared on May 11,1999: the solar wind plasma density and' dynamic pressure were less than 1 cm(-3) and 0.1 nPa respectively, while the interplanetary magnetic field was northward. The polar ionospheric data observed by the multi-instruments at Zhongshan Station in Antarctica on such special event day was compared with those of the control day (May 14). It was shown that geomagnetic activity was very quiet on May 11 at Zhongshan. The magnetic pulsation, which usually occurred at about magnetic noon, did not appear. The ionosphere was steady and stratified, and the F-2 layer spread very little. The critical frequency of dayside F-2 layer, f(0)F(2), was larger than that of control day, and the peak of f(0)F(2) appeared 2 hours earlier. The ionospheric drift velocity was less than usual. There were intensive auroral E-s appearing at magnetic noon. All this indicates that the polar ionosphere was extremely quiet and geomagnetic field was much more dipolar on May 11. There were some signatures of auroral substorm before midnight, such as the negative deviation of the geomagnetic H component, accompanied with auroral E-s and weak Pc3 pulsation.
Resumo:
An experimental study of the effect of fuel stagnation temperature on mixing in a supersonic hydrogen-air flame is described, The combustor consisted of a constant-area rectangular duct with a centrally located fuel-injection strut that spanned the width. A high-enthalpy stream of air was supplied by a free-piston shock tunnel, and heated hydrogen fuel, supplied by a gun-tunnel, was injected into the freestream as a coflowing planar jet. The freestream total enthalpies were 5.6, 6.5, and 9 MJ/kg, and fuel stagnation temperatures were 300, 450, and 700 K, Raising the fuel stagnation temperature increased the fuel velocity to be near that of the airstream and resulted in a decrease in the mixing rate, Even as the fuel and air velocities became equal, significant mixing still occurred because of a large difference in density, Increasing the freestream enthalpy reduced the difference between the initial air temperature and the adiabatic flame temperature, which in turn reduced the heat addition, and subsequently, the amount of pressure rise in the duct.
Resumo:
A novel flow-tagging technique is presented which was employed to measure gas velocities in the free stream of a shock tube. This method is based on the laser spectroscopic techniques of Laser-Enhanced Ionisation (LEI) and Laser-Induced Fluorescence (LIF). The flow in the shock tube is seeded with small amounts of sodium, and LEI is used to produce a substantial depletion of neutral sodium atom concentration in a well-defined region of the flow, by using two wavelength-resonance excitation and subsequent collisional ionisation. At a specific time delay, single-laser-pulse planar LIF is utilised to produce a two-dimensional (2-D) inverse image of the depleted tagged region downstream of the flow. By measuring the displacement of the tagged region, free stream velocities in a shock tube were determined. Large variations in the concentration of sodium seeded into the flow were observed and even in the presence of these large variations accurate free-stream velocity measurements were obtained. The experimentally determined value for velocity compares very well with the predicted velocity.
Resumo:
Shock-tunnel experiments have been performed to measure the effect on skin-friction drag in a supersonic combustor of flow disturbances induced by hydrogen fuel injection transverse to the airstream. Constant-area, circular cross section combustors of lengths varying up to 0.52 m were employed. The experiments were done at a stagnation enthalpy of 7.2 MJ . kg(-1) and a Mach number of 4.3, with a boundary layer that was turbulent downstream of the 0.14-m station in the combustors. Combustor skin-friction drag was measured by a method based on the stress wave force balance, the method being validated by agreement between fuel-off skin-friction drag measurements and predictions using existing skin-friction theories. When fuel was injected, it was found that the drag remained at fuel-off values. Thus, the streamwise vortices and other flow disturbances induced by the fuel injection, mixing, and combustion, which are expected to be present in a scramjet combustor, did not influence the skin-friction drag of the combustors.
Resumo:
A combination of modelling and analysis techniques was used to design a six component force balance. The balance was designed specifically for the measurement of impulsive aerodynamic forces and moments characteristic of hypervelocity shock tunnel testing using the stress wave force measurement technique. Aerodynamic modelling was used to estimate the magnitude and distribution of forces and finite element modelling to determine the mechanical response of proposed balance designs. Simulation of balance performance was based on aerodynamic loads and mechanical responses using convolution techniques. Deconvolution was then used to assess balance performance and to guide further design modifications leading to the final balance design. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Backtrack simulation analysis indicates that wind-blown mosquitoes could have traveled from New Guinea to Australia, potentially introducing Japanese encephalitis virus. Large incursions of the virus in 1995 and 1998 were linked with low-pressure systems that sustained strong northerly winds from New Guinea to the Cape York Peninsula.
Resumo:
This paper attempts a state-of-the-art summary of research into thunderstorm wind fields from an engineering perspective. The characteristics of thunderstorms and the two extreme wind events-tornadoes and downbursts-spawn by thunderstorms are described. The significant differences from traditional boundary layer flows are highlighted. The importance of thunderstorm gusts in the worldwide database of extreme wind events is established. Physical simulations of tornadoes and downbursts are described and discussed leading to the recommendation that Wind Engineering needs to focus more resources on the fundamental issue - What is the flow structure in the strongest winds? © 2002 Published by Elsevier Science Ltd.
Resumo:
Observational data collected in the Lake Tekapo hydro catchment of the Southern Alps in New Zealand are used to analyse the wind and temperature fields in the alpine lake basin during summertime fair weather conditions. Measurements from surface stations, pilot balloon and tethersonde soundings, Doppler sodar and an instrumented light aircraft provide evidence of multi-scale interacting wind systems, ranging from microscale slope winds to mesoscale coast-to-basin flows. Thermal forcing of the winds occurred due to differential heating as a consequence of orography and heterogeneous surface features, which is quantified by heat budget and pressure field analysis. The daytime vertical temperature structure was characterised by distinct layering. Features of particular interest are the formation of thermal internal boundary layers due to the lake-land discontinuity and the development of elevated mixed layers. The latter were generated by advective heating from the basin and valley sidewalls by slope winds and by a superimposed valley wind blowing from the basin over Lake Tekapo and up the tributary Godley Valley. Daytime heating in the basin and its tributary valleys caused the development of a strong horizontal temperature gradient between the basin atmosphere and that over the surrounding landscape, and hence the development of a mesoscale heat low over the basin. After noon, air from outside the basin started flowing over mountain saddles into the basin causing cooling in the lowest layers, whereas at ridge top height the horizontal air temperature gradient between inside and outside the basin continued to increase. In the early evening, a more massive intrusion of cold air caused rapid cooling and a transition to a rather uniform slightly stable stratification up to about 2000 m agl. The onset time of this rapid cooling varied about 1-2 h between observation sites and was probably triggered by the decay of up-slope winds inside the basin, which previously countered the intrusion of air over the surrounding ridges. The intrusion of air from outside the basin continued until about mid-night, when a northerly mountain wind from the Godley Valley became dominant. The results illustrate the extreme complexity that can be caused by the operation of thermal forcing processes at a wide range of spatial scales.