10 resultados para Superconducting Qubits
em University of Queensland eSpace - Australia
Resumo:
We present here a new approach to scalable quantum computing - a 'qubus computer' - which realizes qubit measurement and quantum gates through interacting qubits with a quantum communication bus mode. The qubits could be 'static' matter qubits or 'flying' optical qubits, but the scheme we focus on here is particularly suited to matter qubits. There is no requirement for direct interaction between the qubits. Universal two-qubit quantum gates may be effected by schemes which involve measurement of the bus mode, or by schemes where the bus disentangles automatically and no measurement is needed. In effect, the approach integrates together qubit degrees of freedom for computation with quantum continuous variables for communication and interaction.
Resumo:
We propose a simple picture for the occurrence of superconductivity and the pressure dependence of the superconducting critical temperature, T-SC, in ZrZn2. According to our hypothesis the pairing potential is independent of pressure, but the exchange splitting, E-xc leads to a pressure dependence in the (spin dependent) density of states at the Fermi level, D-sigma (epsilon(F)). Assuming p-wave pairing T-SC is dependent on D-sigma (epsilonF) which ensures that, in the absence of non-magnetic impurities, T-SC decreases as pressure is applied until it reaches a minimum in the paramagnetic state. Disorder reduces this minimum to zero, this gives the illusion that the superconductivity disappears at the same pressure as ferromagnetism does.
Resumo:
We describe a scheme for the encoding and manipulation of single photon qubits in optical sideband modes using standard optical elements. We propose and analyze the radio frequency half-wave plate, which may be used to make arbitrary rotations of a state in the frequency basis, and the frequency beamsplitter, which may be used to separate (or combine) photons of different frequencies into (from) different spatial modes.
Resumo:
Incommensurate lattice fluctuations are present in the beta(L) phase (T-c similar to 1.5 K) of ET2I3 (where ET is BEDT-TTF - bis(ethylenedithio)tetrathiafulvalene) but are absent in the beta(H) phase (T-c similar to 7 K). We propose that the disorder in the conformational degrees of freedom of the terminal ethylene groups of the ET molecules, which is required to stabilise the lattice fluctuations, increases the quasiparticle scattering rate and that this leads to the observed difference in the Superconducting critical temperatures, T-c, of the two phases. We calculate the dependence of T-c on the interlayer residual resistivity. Our theory has no free parameters. Our predictions are shown to be consistent with experiment. We describe experiments to conclusively test our hypothesis.
Resumo:
We discuss the long-distance transmission of qubits encoded in optical coherent states. Through absorption, these qubits suffer from two main types of errors, namely the reduction of the amplitude of the coherent states and accidental application of the Pauli Z operator. We show how these errors can be fixed using techniques of teleportation and error-correcting codes.
Resumo:
We demonstrate a quantum error correction scheme that protects against accidental measurement, using a parity encoding where the logical state of a single qubit is encoded into two physical qubits using a nondeterministic photonic controlled-NOT gate. For the single qubit input states vertical bar 0 >, vertical bar 1 >, vertical bar 0 > +/- vertical bar 1 >, and vertical bar 0 > +/- i vertical bar 1 > our encoder produces the appropriate two-qubit encoded state with an average fidelity of 0.88 +/- 0.03 and the single qubit decoded states have an average fidelity of 0.93 +/- 0.05 with the original state. We are able to decode the two-qubit state (up to a bit flip) by performing a measurement on one of the qubits in the logical basis; we find that the 64 one-qubit decoded states arising from 16 real and imaginary single-qubit superposition inputs have an average fidelity of 0.96 +/- 0.03.
Resumo:
We present a technique to identify exact analytic expressions for the multiquantum eigenstates of a linear chain of coupled qubits. A choice of Hilbert subspaces is described that allows an exact solution of the stationary Schrodinger equation without imposing periodic boundary conditions and without neglecting end effects, fully including the dipole-dipole nearest-neighbor interaction between the atoms. The treatment is valid for an arbitrary coherent excitation in the atomic system, any number of atoms, any size of the chain relative to the resonant wavelength and arbitrary initial conditions of the atomic system. The procedure we develop is general enough to be adopted for the study of excitation in an arbitrary array of atoms including spin chains and one-dimensional Bose-Einstein condensates.
Resumo:
We present a linear optics quantum computation scheme that employs a new encoding approach that incrementally adds qubits and is tolerant to photon loss errors. The scheme employs a circuit model but uses techniques from cluster-state computation and achieves comparable resource usage. To illustrate our techniques we describe a quantum memory which is fault tolerant to photon loss.
Resumo:
We show how to convert between partially coherent superpositions of a single photon with the vacuum by using linear optics and postselection based on homodyne measurements. We introduce a generalized quantum efficiency for such states and show that any conversion that decreases this quantity is possible. We also prove that our scheme is optimal by showing that no linear optical scheme with generalized conditional measurements, and with one single-rail qubit input, can improve the generalized efficiency. (c) 2006 Optical Society of America.
Resumo:
We review the role of strong electronic correlations in quasi-two-dimensional organic charge transfer salts such as (BEDT-TTF)(2)X, (BETS)(2)Y, and beta'-[Pd(dmit)(2)](2)Z. We begin by defining minimal models for these materials. It is necessary to identify two classes of material: the first class is strongly dimerized and is described by a half-filled Hubbard model; the second class is not strongly dimerized and is described by a quarter-filled extended Hubbard model. We argue that these models capture the essential physics of these materials. We explore the phase diagram of the half-filled quasi-two-dimensional organic charge transfer salts, focusing on the metallic and superconducting phases. We review work showing that the metallic phase, which has both Fermi liquid and 'bad metal' regimes, is described both quantitatively and qualitatively by dynamical mean field theory (DMFT). The phenomenology of the superconducting state is still a matter of contention. We critically review the experimental situation, focusing on the key experimental results that may distinguish between rival theories of superconductivity, particularly probes of the pairing symmetry and measurements of the superfluid stiffness. We then discuss some strongly correlated theories of superconductivity, in particular the resonating valence bond (RVB) theory of superconductivity. We conclude by discussing some of the major challenges currently facing the field. These include parameterizing minimal models, the evidence for a pseudogap from nuclear magnetic resonance (NMR) experiments, superconductors with low critical temperatures and extremely small superfluid stiffnesses, the possible spin- liquid states in kappa-(ET)(2)Cu-2(CN)(3) and beta'-[Pd(dmit)(2)](2)Z, and the need for high quality large single crystals.