11 resultados para Sums of squares
em University of Queensland eSpace - Australia
Resumo:
Multipole expansion of an incident radiation field-that is, representation of the fields as sums of vector spherical wavefunctions-is essential for theoretical light scattering methods such as the T-matrix method and generalised Lorenz-Mie theory (GLMT). In general, it is theoretically straightforward to find a vector spherical wavefunction representation of an arbitrary radiation field. For example, a simple formula results in the useful case of an incident plane wave. Laser beams present some difficulties. These problems are not a result of any deficiency in the basic process of spherical wavefunction expansion, but are due to the fact that laser beams, in their standard representations, are not radiation fields, but only approximations of radiation fields. This results from the standard laser beam representations being solutions to the paraxial scalar wave equation. We present an efficient method for determining the multipole representation of an arbitrary focussed beam. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Abstract Development data of eggs and pupae of Xyleborus fornicatus Eichh. (Coleoptera: Scolytidae), the shot-hole borer of tea in Sri Lanka, at constant temperatures were used to evaluate a linear and seven nonlinear models for insect development. Model evaluation was based on fit to data (residual sum of squares and coefficient of determination or coefficient of nonlinear regression), number of measurable parameters, the biological value of the fitted coefficients and accuracy in the estimation of thresholds. Of the nonlinear models, the Lactin model fitted experimental data well and along with the linear model, can be used to describe the temperature-dependent development of this species.
Resumo:
A critical set in a Latin square of order n is a set of entries from the square which can be embedded in precisely one Latin square of order n, Such that if any element of the critical set. is deleted, the remaining set can be embedded, in more than one Latin square of order n.. In this paper we find all the critical sets of different sizes in the Latin squares of order at most six. We count the number of main and isotopy classes of these critical sets and classify critical sets from the main classes into various strengths. Some observations are made about the relationship between the numbers of classes, particularly in the 6 x 6 case. Finally some examples are given of each type of critical set.
Resumo:
We find necessary and sufficient conditions for completing an arbitrary 2 by n latin rectangle to an n by n symmetric latin square, for completing an arbitrary 2 by n latin rectangle to an n by n unipotent symmetric latin square, and for completing an arbitrary 1 by n latin rectangle to an n by n idempotent symmetric latin square. Equivalently, we prove necessary and sufficient conditions for the existence of an (n - 1)-edge colouring of K-n (n even), and for an n-edge colouring of K-n (n odd) in which the colours assigned to the edges incident with two vertices are specified in advance.
Resumo:
In this paper we focus on the existence of 2-critical sets in the latin square corresponding to the elementary abelian 2-group of order 2(n). It has been shown by Stinson and van Rees that this latin square contains a 2-critical set of volume 4(n) - 3(n). We provide constructions for 2-critical sets containing 4(n) - 3(n) + 1 - (2(k-1) + 2(m-1) + 2(n-(k+m+1))) entries, where 1 less than or equal to k less than or equal to n and 1 less than or equal to m less than or equal to n - k. That is, we construct 2-critical sets for certain values less than 4(n) - 3(n) + 1 - 3 (.) 2([n /3]-1). The results raise the interesting question of whether, for the given latin square, it is possible to construct 2-critical sets of volume m, where 4(n) - 3(n) + 1 - 3 (.) 2([n/3]-1) < m < 4(n) - 3(n).
Resumo:
Previously the process of finding critical sets in Latin squares has been inside cumbersome by the complexity and number of Latin trades that, must be constructed. In this paper we develop a theory of Latin trades that yields more transparent constructions. We use these Latin trades to find a new class of critical sets for Latin squares which are a product of the Latin square of order 2 with a. back circulant Latin square of odd order.