20 resultados para Subsystems
em University of Queensland eSpace - Australia
Resumo:
Gray's Reinforcement Sensitivity Theory (RST) consists of the Behavioural Activation System (BAS) which is the basis of Impulsivity, and Behavioural Inhibition System (BIS) which is the basis of Anxiety. In this study, Impulsivity and Anxiety were used as distal predictors of attitudes to religion in the prediction of three religious dependent variables (Church attendance, Amount of prayer, and Importance of church). We hypothesised that Impulsivity would independently predict a Rewarding attitude to the Church and that Anxiety would independently predict an Anxious attitude to the church, and that these attitudes would be proximal predictors of our dependent variables. Moreover, we predicted that interactions between predictors would be proximal. Using structural equation modelling, data from 400 participants supported the hypotheses. We also tested Eysenck's personality scales of Extraversion and Neuroticism and found a key path of the structural equation model to be non-significant. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
It is shown that there exists a triangle decomposition of the graph obtained from the complete graph of order v by removing the edges of two vertex disjoint complete subgraphs of orders u and w if and only if u, w, and v are odd, ((v)(2)) - ((u)(2)) - ((w)(2)) equivalent to 0 (mod 3), and v >= w + u + max {u, w}. Such decompositions are equivalent to group divisible designs with block size 3, one group of size u, one group of size w, and v - u - w groups of size 1. This result settles the existence problem for Steiner triple systems having two disjoint specified subsystems, thereby generalizing the well-known theorem of Doyen and Wilson on the existence of Steiner triple systems with a single specified subsystem. (c) 2005 Wiley Periodicals, Inc.
Resumo:
We investigate the entanglement characteristics of two general bimodal Bose-Einstein condensates-a pair of tunnel-coupled Bose-Einstein condensates and the atom-molecule Bose-Einstein condensate. We argue that the entanglement is only physically meaningful if the system is viewed as a bipartite system, where the subsystems are the two modes. The indistinguishibility of the particles in the condensate means that the atomic constituents are physically inaccessible and, thus, the degree of entanglement between individual particles, unlike the entanglement between the modes, is not experimentally relevant so long as the particles remain in the condensed state. We calculate the entanglement between the two modes for the exact ground state of the two bimodal condensates and consider the dynamics of the entanglement in the tunnel-coupled case.
Resumo:
Software Configuration Management is the discipline of managing large collections of software development artefacts from which software products are built. Software configuration management tools typically deal with artefacts at fine levels of granularity - such as individual source code files - and assist with coordination of changes to such artefacts. This paper describes a lightweight tool, designed to be used on top of a traditional file-based configuration management system. The add-on tool support enables users to flexibly define new hierarchical views of product structure, independent of the underlying artefact-repository structure. The tool extracts configuration and change data with respect to the user-defined hierarchy, leading to improved visibility of how individual subsystems have changed. The approach yields a range of new capabilities for build managers, and verification and validation teams. The paper includes a description of our experience using the tool in an organization that builds large embedded software systems.
Resumo:
A parallel computing environment to support optimization of large-scale engineering systems is designed and implemented on Windows-based personal computer networks, using the master-worker model and the Parallel Virtual Machine (PVM). It is involved in decomposition of a large engineering system into a number of smaller subsystems optimized in parallel on worker nodes and coordination of subsystem optimization results on the master node. The environment consists of six functional modules, i.e. the master control, the optimization model generator, the optimizer, the data manager, the monitor, and the post processor. Object-oriented design of these modules is presented. The environment supports steps from the generation of optimization models to the solution and the visualization on networks of computers. User-friendly graphical interfaces make it easy to define the problem, and monitor and steer the optimization process. It has been verified by an example of a large space truss optimization. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Cognitive modelling of phenomena in clinical practice allows the operationalisation of otherwise diffuse descriptive terms such as craving or flashbacks. This supports the empirical investigation of the clinical phenomena and the development of targeted treatment interventions. This paper focuses on the cognitive processes underpinning craving, which is recognised as a motivating experience in substance dependence. We use a high-level cognitive architecture, Interacting Cognitive Subsystems (ICS), to compare two theories of craving: Tiffany's theory, centred on the control of automated action schemata, and our own Elaborated Intrusion theory of craving. Data from a questionnaire study of the subjective aspects of everyday desires experienced by a large non-clinical population are presented. Both the data and the high-level modelling support the central claim of the Elaborated Intrusion theory that imagery is a key element of craving, providing the subjective experience and mediating much of the associated disruption of concurrent cognition.
Resumo:
We investigate quantum many-body systems where all low-energy states are entangled. As a tool for quantifying such systems, we introduce the concept of the entanglement gap, which is the difference in energy between the ground-state energy and the minimum energy that a separable (unentangled) state may attain. If the energy of the system lies within the entanglement gap, the state of the system is guaranteed to be entangled. We find Hamiltonians that have the largest possible entanglement gap; for a system consisting of two interacting spin-1/2 subsystems, the Heisenberg antiferromagnet is one such example. We also introduce a related concept, the entanglement-gap temperature: the temperature below which the thermal state is certainly entangled, as witnessed by its energy. We give an example of a bipartite Hamiltonian with an arbitrarily high entanglement-gap temperature for fixed total energy range. For bipartite spin lattices we prove a theorem demonstrating that the entanglement gap necessarily decreases as the coordination number is increased. We investigate frustrated lattices and quantum phase transitions as physical phenomena that affect the entanglement gap.
Resumo:
The monogamous nature of entanglement has been illustrated by the derivation of entanglement-sharing inequalities-bounds on the amount of entanglement that can be shared among the various parts of a multipartite system. Motivated by recent studies of decoherence, we demonstrate an interesting manifestation of this phenomena that arises in system-environment models where there exists interactions between the modes or subsystems of the environment. We investigate this phenomenon in the spin-bath environment, constructing an entanglement-sharing inequality bounding the entanglement between a central spin and the environment in terms of the pairwise entanglement between individual bath spins. The relation of this result to decoherence will be illustrated using simplified system-bath models of decoherence.
Resumo:
We discuss the problem of determining whether the state of several quantum mechanical subsystems is entangled. As in previous work on two subsystems we introduce a procedure for checking separability that is based on finding state extensions with appropriate properties and may be implemented as a semidefinite program. The main result of this work is to show that there is a series of tests of this kind such that if a multiparty state is entangled this will eventually be detected by one of the tests. The procedure also provides a means of constructing entanglement witnesses that could in principle be measured in order to demonstrate that the state is entangled.
Resumo:
We prove that a pure entangled state of two subsystems with equal spin is equivalent to a two-mode spin-squeezed state under local operations except for a set of bipartite states with measure zero, and provide a counterexample to the generalization of this result to two subsystems of unequal spin.
Resumo:
We have previously shown that a division of the f-shell into two subsystems gives a better understanding of the cohesive properties as well the general behavior of lanthanide systems. In this article, we present numerical computations, using the suggested method. We show that the picture is consistent with most experimental data, e.g., the equilibrium volume and electronic structure in general. Compared with standard energy band calculations and calculations based on the self-interaction correction and LIDA + U, the f-(non-f)-mixing interaction is decreased by spectral weights of the many-body states of the f-ion. (c) 2005 Wiley Periodicals, Inc.
Resumo:
In this paper, a new control design method is proposed for stable processes which can be described using Hammerstein-Wiener models. The internal model control (IMC) framework is extended to accommodate multiple IMC controllers, one for each subsystem. The concept of passive systems is used to construct the IMC controllers which approximate the inverses of the subsystems to achieve dynamic control performance. The Passivity Theorem is used to ensure the closed-loop stability. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The Appetitive Motivation Scale (Jackson & Smillie, 2004) is a new trait conceptualisation of Gray's (I 970 199 1) Behavioural Activation System. In this experiment we explore relationships that the Appetitive Motivation Scale and other measures of Gray's model have with Approach and Active Avoidance responses. Using a sample of 144 undergraduate students, both Appetitive Motivation and Sensitivity to Reward (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire, SPSRQ; Torrubia, Avila, Molto, & Ceseras, 2001), were found to be significant predictors of Approach and Active Avoidance response latency. This confirms previous experimental validations of the SPSRQ (e.g., Avila, 2001) and provides the first experimental evidence for the validity of the Appetitive Motivation scale. Consistent with interactive views of Gray's model (e.g., Corr, 2001), high SPSRQ Sensitivity to Punishment diminished the relationship between Sensitivity to Reward and our BAS criteria. Measures of BIS did not however interact in this way with the appetitive motivation scale. A surprising result was the failure for any of Carver and White's (1994) BAS scales to correlate with RST criteria. Implications of these findings and potential future directions are discussed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A structurally-based quasi-chemical viscosity model for fully liquid slags in the Al2O3 CaO-'FeO'-MgOSiO2 system has been developed. The focus of the work described in the present paper is the analysis of the experimental data and viscosity models in the quaternary system Al2O3 CaO-MgO-SiO2 and its subsystems. A review of the experimental data, viscometry methods used and viscosity models available in the Al2O3 CaO-MgO-SiO2 and its sub-systems is reported. The quasi-chemical viscosity model is shown to provide good agreement between experimental data and predictions over the whole compositional range.