27 resultados para Subjective Logic
em University of Queensland eSpace - Australia
Resumo:
Multiplication and comultiplication of beliefs represent a generalisation of multiplication and comultiplication of probabilities as well as of binary logic AND and OR. Our approach follows that of subjective logic, where belief functions are expressed as opinions that are interpreted as being equivalent to beta probability distributions. We compare different types of opinion product and coproduct, and show that they represent very good approximations of the analytical product and coproduct of beta probability distributions. We also define division and codivision of opinions, and compare our framework with other logic frameworks for combining uncertain propositions. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
This paper reports on a system for automated agent negotiation, based on a formal and executable approach to capture the behavior of parties involved in a negotiation. It uses the JADE agent framework, and its major distinctive feature is the use of declarative negotiation strategies. The negotiation strategies are expressed in a declarative rules language, defeasible logic, and are applied using the implemented system DR-DEVICE. The key ideas and the overall system architecture are described, and a particular negotiation case is presented in detail.
Resumo:
In this paper we follow the BOID (Belief, Obligation, Intention, Desire) architecture to describe agents and agent types in Defeasible Logic. We argue, in particular, that the introduction of obligations can provide a new reading of the concepts of intention and intentionality. Then we examine the notion of social agent (i.e., an agent where obligations prevail over intentions) and discuss some computational and philosophical issues related to it. We show that the notion of social agent either requires more complex computations or has some philosophical drawbacks.
Resumo:
While some recent frameworks on cognitive agents addressed the combination of mental attitudes with deontic concepts, they commonly ignore the representation of time. An exception is [1]that manages also some temporal aspects both with respect to cognition and normative provisions. We propose in this paper an extension of the logic presented in [1]with temporal intervals.
Resumo:
The theory of Owicki and Gries has been used as a platform for safety-based verifcation and derivation of concurrent programs. It has also been integrated with the progress logic of UNITY which has allowed newer techniques of progress-based verifcation and derivation to be developed. However, a theoretical basis for the integrated theory has thus far been missing. In this paper, we provide a theoretical background for the logic of Owicki and Gries integrated with the logic of progress from UNITY. An operational semantics for the new framework is provided which is used to prove soundness of the progress logic.
Resumo:
We explore of the feasibility of the computationally oriented institutional agency framework proposed by Governatori and Rotolo testing it against an industrial strength scenario. In particular we show how to encode in defeasible logic the dispute resolution policy described in Article 67 of FIDIC.
Resumo:
This article extends Defeasible Logic to deal with the contextual deliberation process of cognitive agents. First, we introduce meta-rules to reason with rules. Meta-rules are rules that have as a consequent rules for motivational components, such as obligations, intentions and desires. In other words, they include nested rules. Second, we introduce explicit preferences among rules. They deal with complex structures where nested rules can be involved.
Resumo:
Models of population dynamics are commonly used to predict risks in ecology, particularly risks of population decline. There is often considerable uncertainty associated with these predictions. However, alternatives to predictions based on population models have not been assessed. We used simulation models of hypothetical species to generate the kinds of data that might typically be available to ecologists and then invited other researchers to predict risks of population declines using these data. The accuracy of the predictions was assessed by comparison with the forecasts of the original model. The researchers used either population models or subjective judgement to make their predictions. Predictions made using models were only slightly more accurate than subjective judgements of risk. However, predictions using models tended to be unbiased, while subjective judgements were biased towards over-estimation. Psychology literature suggests that the bias of subjective judgements is likely to vary somewhat unpredictably among people, depending on their stake in the outcome. This will make subjective predictions more uncertain and less transparent than those based on models. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
The refinement calculus provides a framework for the stepwise development of imperative programs from specifications. In this paper we study a refinement calculus for deriving logic programs. Dealing with logic programs rather than imperative programs has the dual advantages that, due to the expressive power of logic programs, the final program is closer to the original specification, and each refinement step can achieve more. Together these reduce the overall number of derivation steps. We present a logic programming language extended with specification constructs (including general predicates, assertions, and types and invariants) to form a wide-spectrum language. General predicates allow non-executable properties to be included in specifications. Assertions, types and invariants make assumptions about the intended inputs of a procedure explicit, and can be used during refinement to optimize the constructed logic program. We provide a semantics for the extended logic programming language and derive a set of refinement laws. Finally we apply these to an example derivation.
Resumo:
The tannin-degrading species Streptococcus gallolyticus and Streptococcus caprinus have been shown to be subjective synonyms on the basis of their levels of 16S rRNA sequence similarity (98.3%) and DNA-DNA homology (>70%) and the phenotypes of their type strains. S. gallolyticus has nomenclatural priority according to Rule 24b(2) of the International Code of Nomenclature of Bacteria.
Resumo:
In this paper we demonstrate a refinement calculus for logic programs, which is a framework for developing logic programs from specifications. The paper is written in a tutorial-style, using a running example to illustrate how the refinement calculus is used to develop logic programs. The paper also presents an overview of some of the advanced features of the calculus, including the introduction of higher-order procedures and the refinement of abstract data types.