29 resultados para Structuration of the regional area

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In broader catchment scale investigations, there is a need to understand and ultimately exploit the spatial variation of agricultural crops for an improved economic return. In many instances, this spatial variation is temporally unstable and may be different for various crop attributes and crop species. In the Australian sugar industry, the opportunity arose to evaluate the performance of 231 farms in the Tully Mill area in far north Queensland using production information on cane yield (t/ha) and CCS ( a fresh weight measure of sucrose content in the cane) accumulated over a 12-year period. Such an arrangement of data can be expressed as a 3-way array where a farm x attribute x year matrix can be evaluated and interactions considered. Two multivariate techniques, the 3-way mixture method of clustering and the 3-mode principal component analysis, were employed to identify meaningful relationships between farms that performed similarly for both cane yield and CCS. In this context, farm has a spatial component and the aim of this analysis was to determine if systematic patterns in farm performance expressed by cane yield and CCS persisted over time. There was no spatial relationship between cane yield and CCS. However, the analysis revealed that the relationship between farms was remarkably stable from one year to the next for both attributes and there was some spatial aggregation of farm performance in parts of the mill area. This finding is important, since temporally consistent spatial variation may be exploited to improve regional production. Alternatively, the putative causes of the spatial variation may be explored to enhance the understanding of sugarcane production in the wet tropics of Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological underpinnings of human intelligence remain enigmatic. There remains the greatest confusion and controversy regarding mechanisms that enable humans to conceptualize, plan, and prioritize, and why they are set apart from other animals in their cognitive abilities. Here we demonstrate that the basic neuronal building block of the cerebral cortex, the pyramidal cell, is characterized by marked differences in structure among primate species. Moreover, comparison of the complexity of neuron structure with the size of the cortical area/region in which the cells are located revealed that trends in the granular prefrontal cortex (gPFC) were dramatically different to those in visual cortex. More specifically, pyramidal cells in the gPFC of humans had a disproportionately high number of spines. As neuron structure determines both its biophysical properties and connectivity, differences in the complexity in dendritic structure observed here endow neurons with different computational abilities. Furthermore, cortical circuits composed of neurons with distinguishable morphologies will likely be characterized by different functional capabilities. We propose that 1. circuitry in V1, V2, and gPFC within any given species differs in its functional capabilities and 2. there are dramatic differences in the functional capabilities of gPFC circuitry in different species, which are central to the different cognitive styles of primates. In particular, the highly branched, spinous neurons in the human gPFC may be a key component of human intelligence. (C) 2005 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aged garlic extract 'Kyolic' lowers serum cholesterol levels in humans and experimental animals and thus is presumed to have a protective effect against atherosclerosis. However, to date no studies have examined the effect of this substance on the actual development of the disease. In the present study, the right carotid artery of 24 rabbits was de-endothelialized by balloon catheterisation in order to produce a myointimal thickening. After 2 weeks the rabbits were randomly assigned to four groups: Group I received a standard diet; Group II received the standard diet supplemented with 800 mu 1/kg body weight/day 'Kyolic'; Group III received a 1% cholesterol supplemented standard diet; and Group IV received a 1% cholesterol supplemented standard diet plus 'Kyolic'. After 6 weeks, the cholesterol diet caused a 6-fold increase in serum cholesterol level (Group III; 6.4 +/- 0.6 mmol/1) compared to normal diet (Group I; 1.2 +/- 0.4 mmol/1) (P < 0.05) with only a minor, non-significant reduction seen by the addition of 'Kyolic' (Group IV; 6.2 +/- 0.7 mmol/l). Group III rabbits developed fatty streak lesions covering approximately 70 +/- 8% of the surface area of the thoracic aorta, which was significantly reduced to 25 +/- 3% in the 'Kyolic'-treated Group IV. No lesions were present in Groups I and II. The hypercholesterolaemic diet caused an increase in aortic arch cholesterol (2.1 +/- 0.1 mg cholesterol/g tissue) which was significantly reduced by 'Kyolic' supplementation (1.7 +/- 0.2 mg cholesterol/g tissue) (P < 0.05). 'Kyolic' significantly inhibited the development of thickened, lipid-filled lesions in the pre-formed neointimas produced by balloon-catheter injury of the right carotid artery in cholesterol-fed rabbits (intima as percent of artery wall, Group III 42.6 +/- 6.5% versus Group IV 23.8 +/- 2.3%, P < 0.01), but had little effect in rabbits on a standard diet (Group II 18.4 +/- 5.0% versus Group I 16.7 +/- 2.0%). In vitro studies showed that 'Kyolic' has a direct effect on inhibition of smooth muscle proliferation. In conclusion,'Kyolic' treatment reduces fatty streak development, vessel wall cholesterol accumulation and the development of fibro fatty plaques in neointimas of cholesterol-fed rabbits, thus providing protection against the onset of atherosclerosis. (C) 1997 Elsevier Science Ireland Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chaotically structured diamictite from the inner ring syncline surrounding the central uplift of the Woodleigh impact structure contains shocked metamorphic and impact melt-rock fragments, largely derived from Ordovician and Devonian target sandstones. Coarse illite fractions (< 2 mu m) from the sandstones containing no K-feldspar yield K-Ar ages of around 400 Ma, whereas the K-Ar ages of authigenic clays of > 0.2 mu m fractions from the diamictite without smectite and K-feldspar cluster around 360 Ma, consistent with Rb-Sr data. Crystallisation of newly formed illite in the impact melt rock clasts and recrystallisation of earlier formed illite in the sandstone clasts preserved in the diamictite, are attributed to impact-induced hydrothermal processes in the Late Devonian. The illitic clays from the diamictite and from the sandstones have very similar trace element compositions, with significantly enriched incompatible lithophile elements, which increase in concentrations correlatively with those of the compatible ferromagnesian elements. The unusual trace element associations in the clays may be due to the involvement of hot gravity-driven basinal fluids that interacted with rocks of the Precambrian craton to the east of the study area, or with such material transported and reworked in the studied sedimentary succession.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for regional assessment of the distribution of saline outbreaks is demonstrated for a large area (68 000 km(2)) in north Queensland, Australia. Soil samples were used in conjunction with a digital elevation model and a map of potentially saline discharge zones to examine the landscape distribution of soluble salts in the region. The hypothesis of atmospheric accession of salt was tested for the topographically defined catchment regions feeding into each potentially saline discharge area. Most catchments showed a salt distribution consistent with this hypothesis, i.e. %TSS was large near the discharge areas and decreased rapidly with distance uphill from the discharge areas. In some catchments, however, local saline outbreaks were apparent at significant distances uphill from discharge areas. The possibility of geological sources of this salt was examined by comparing random point distributions with the location of saline points with distance downhill from geological units (excluding points near discharge zones). The distribution of some saline outbreaks was consistent with the occurrence of Cambro-Ordovician metasediments, Devonian limestone, Upper Devonian-Lower Carboniferous volcanics, and Triassic sediments. Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously it has been shown that the branching pattern of pyramidal cells varies markedly between different cortical areas in simian primates. These differences are thought to influence the functional complexity of the cells. In particular, there is a progressive increase in the fractal dimension of pyramidal cells with anterior progression through cortical areas in the occipitotemporal (OT) visual stream, including the primary visual area (V1), the second visual area (V2), the dorsolateral area (DL, corresponding to the fourth visual area) and inferotemporal cortex (IT). However, there are as yet no data on the fractal dimension of these neurons in prosimian primates. Here we focused on the nocturnal prosimian galago (Otolemur garnetti). The fractal dimension (D), and aspect ratio (a measure of branching symmetry), was determined for I I I layer III pyramidal cells in V1, V2, DL and IT. We found, as in simian primates, that the fractal dimension of neurons increased with anterior progression from V1 through V2, DL, and IT. Two important conclusions can be drawn from these results: (1) the trend for increasing branching complexity with anterior progression through OT areas was likely to be present in a common primate ancestor, and (2) specialization in neuron structure more likely facilitates object recognition than spectral processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have revealed marked differences in the basal dendritic structure of layer III pyramidal cells in the cerebral cortex of adult simian primates. In particular, there is a consistent trend for pyramidal cells of increasing complexity with anterior progression through occipitotemporal cortical visual areas. These differences in pyramidal cell structure, and their systematic nature, are believed to be important for specialized aspects of visual processing within, and between, cortical areas. However, it remains unknown whether this regional specialization in the pyramidal cell phenotype is unique to simians, is unique to primates in general or is widespread amongst mammalian species. In the present study we investigated pyramidal cell structure in the prosimian galago (Otolemur garnetti). We found, as in simians, that the basal dendritic arbors of pyramidal cells differed between cortical areas. More specifically, pyramidal cells became progressively more spinous through the primary (V1), second (V2), dorsolateral (DL) and inferotemporal ( IT) visual areas. Moreover, pyramidal neurons in V1 of the galago are remarkably similar to those in other primate species, in spite of large differences in the sizes of this area. In contrast, pyramidal cells in inferotemporal cortex are quite variable among primate species. These data suggest that regional specialization in pyramidal cell phenotype was a likely feature of cortex in a common ancestor of simian and prosimian primates, but the degree of specialization varies between species. Copyright (C) 2005 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pyramidal cell phenotype varies quite dramatically in structure among different cortical areas in the primate brain. Comparative studies in visual cortex, in particular, but also in sensorimotor and prefrontal cortex, reveal systematic trends for pyramidal cell specialization in functionally related cortical areas. Moreover, there are systematic differences in the extent of these trends between different primate species. Recently we demonstrated differences in pyramidal cell structure in the cingulate cortex of the macaque monkey; however, in the absence of other comparative data it remains unknown as to whether the neuronal phenotype differs in cingulate cortex between species. Here we extend the basis for comparison by studying the structure of the basal dendritic trees of layer III pyramidal cells in the posterior and anterior cingulate gyrus of the vervet monkey (Brodmann's areas 23 and 24, respectively). Cells were injected with Lucifer Yellow in flat-mounted cortical slices, and processed for a light-stable DAB reaction product. Size, branching pattern, and spine density of basal dendritic arbors were determined, and somal areas measured. As in the macaque monkey, we found that pyramidal cells in anterior cingulate gyrus (area 24) were more branched and more spinous than those in posterior cingulate gyrus (area 23). In addition, the extent of the difference in pyramidal cell structure between these two cortical regions was less in the vervet monkey than in the macaque monkey.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six units are distinguished in the Permian sequence, and are considered to belong to the Sakmarian and Artinskian stages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major ongoing debate in population ecology has surrounded the causative factors underlying the abundance of phytophagous insects and whether or not these factors limit or regulate herbivore populations. However, it is often difficult to identify mortality agents in census data, and their distribution and relative importance across large spatial scales are rarely understood. Were, we present life tables for egg batches and larval cohorts of the processionary caterpillar Ochrogaster lunifer Herrich-Schaffer, using intensive local sampling combined with extensive regional monitoring to ascertain the relative importance of different mortality factors at different localities. Extinction of entire cohorts (representing the entire reproductive output of one female) at natural localities was high, with 82% of the initial 492 cohorts going extinct. Mortality was highest in the egg and early instar stages due to predation from dermestid beetles, and while different mortality factors (e.g. hatching failure, egg parasitism and failure to establish on the host) were present at many localities, dermestid predation, either directly observed or inferred from indirect evidence, was the dominant mortality factor at 89% of localities surveyed. Predation was significantly higher in plantations than in natural habitats. The second most important mortality factor was resource depletion, with 14 cohorts defoliating their hosts. Egg and larval parasitism were not major mortality agents. A combination of predation and resource depletion consistently accounted for the majority of mortality across localities, suggesting that both factors are important in limiting population abundance. This evidence shows that O. lunifer is not regulated by natural enemies alone, but that resource patches (Acacia trees) ultimately, and frequently, act together to limit population growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thirst was induced by rapid i.v. infusion of hypertonic saline (0.51 M at 13.4 ml/min). Ten humans were neuroimaged by positron-emission tomography (PET) and four by functional MRI (fMRI). PET images were made 25 min after beginning infusion, when the sensation of thirst began to enter the stream of consciousness. The fMRI images were made when the maximum rate of increase of thirst occurred. The PET results showed regional cerebral blood flow changes similar to those delineated when thirst was maximal. These loci involved the phylogenetically ancient areas of the brain. fMRI showed activation in the anterior wall of the third ventricle, an area that is key in the genesis of thirst but is not an area revealed by PET imaging. Thus, this region plays as major a role in thirst for humans as for animals. Strong activations in the brain with fMRI included the anterior cingulate, parahippocampal gyrus, inferior and middle frontal gyri, insula, and cerebellum. When the subjects drank water to satiation, thirst declined immediately to baseline. A precipitate decline in intensity of activation signal occurred in the anterior cingulate area (Brodmann area 32) putatively related to consciousness of thirst. The intensity of activation in the anterior wall of the third ventricle was essentially unchanged, which is consistent with the fact that a significant time (15-20 min) would be needed before plasma Na concentration changed as a result of water absorption from the gut.