4 resultados para Structural Ledge Theories
em University of Queensland eSpace - Australia
Resumo:
The edge-to-edge matching crystallographic model has been used to predict all the orientation relationships (OR) between crystals that have simple hexagonal close packed (HCP) and body-centered cubic (BCC) structures. Using the critical values for the interatomic spacing misfit along the matching directions and the cl-value mismatch between matching planes, the model predicted all the four common ORs, namely the Burgers OR, the Potter OR, the Pitsch-Schrader OR and the Rong Dunlop OR, together with the corresponding habit planes. Taking the c(H)/a(H) and a(H)/a(B) ratios as variables, where H and B denote the HCP and BCC structures respectively, the model also predicted the relationship between these variables and the four ORs. These predictions are perfectly consistent with the published experimental results. As was the case in the FCC/BCC system, the edge-to-edge matching model has been shown to be a powerful tool for predicting the crystallographic features of diffusion-controlled phase transformations. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The basis of the present authors' edge-to-edge matching model for understanding the crystallography of partially coherent precipitates is the minimization of the energy of the interface between the two phases. For relatively simple crystal structures, this energy minimization occurs when close-packed, or relatively close-packed, rows of atoms match across the interface. Hence, the fundamental principle behind edge-to-edge matching is that the directions in each phase that correspond to the edges of the planes that meet in the interface should be close-packed, or relatively close-packed, rows of atoms. A few of the recently reported examples of what is termed edge-to-edge matching appear to ignore this fundamental principle. By comparing theoretical predictions with available experimental data, this article will explore the validity of this critical atom-row coincidence condition, in situations where the two phases have simple crystal Structures and in those where the precipitate has a more complex structure.
Resumo:
Backbone-cyclized proteins are becoming increasingly well known, although the mechanism by which they are processed from linear precursors is poorly understood. In this report the sequence and structure of the linear precursor of a cyclic trypsin inhibitor, sunflower trypsin inhibitor 1 (SFTI-1) from sunflower seeds, is described. The structure indicates that the major elements of the reactive site loop of SFTI-1 are present before processing. This may have importance for a protease-mediated cyclizing reaction as the rigidity of SFTI-1 may drive the equilibrium of the reaction catalyzed by proteolytic enzymes toward the formation of a peptide bond rather than the normal cleavage reaction. The occurrence of residues in the SFTI-1 precursor susceptible to cleavage by asparaginyl proteases strengthens theories that involve this enzyme in the processing of SFTI-1 and further implicates it in the processing of another family of plant cyclic proteins, the cyclotides. The precursor reported here also indicates that despite strong active site sequence homology, SFTI-1 has no other similarities with the Bowman-Birk trypsin inhibitors, presenting interesting evolutionary questions.