15 resultados para Strongly Semantic Information

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cued recall with an extralist cue poses a challenge for contemporary memory theory in that there is a need to explain how episodic and semantic information are combined. A parallel activation and intersection approach proposes one such means by assuming that an experimental cue will elicit its preexisting semantic network and a context cue will elicit a list memory. These 2 sources of information are then combined by focusing on information that is common to the 2 sources. Two key predictions of that approach are examined: (a) Combining semantic and episodic information can lead to item interactions and false memories, and (b) these effects are limited to memory tasks that involve an episodic context cue. Five experiments demonstrate such item interactions and false memories in cued recall but not in free association. Links are drawn between the use of context in this setting and in other settings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main aim of the proposed approach presented in this paper is to improve Web information retrieval effectiveness by overcoming the problems associated with a typical keyword matching retrieval system, through the use of concepts and an intelligent fusion of confidence values. By exploiting the conceptual hierarchy of the WordNet (G. Miller, 1995) knowledge base, we show how to effectively encode the conceptual information in a document using the semantic information implied by the words that appear within it. Rather than treating a word as a string made up of a sequence of characters, we consider a word to represent a concept.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conflicting findings regarding the ability of people with schizophrenia to maintain and update semantic contexts have been due, arguably, to vagaries within the experimental design employed (e.g. whether strongly or remotely associated prime-target pairs have been used, what delay between the prime and the target was employed, and what proportion of related prime-target pairs appeared) or to characteristics of the participant cohort (e.g. medication status, chronicity of illness). The aim of the present study was to examine how people with schizophrenia maintain and update contextual information over an extended temporal window by using multiple primes that were either remotely associated or unrelated to the target. Fourteen participants with schizophrenia and 12 healthy matched controls were compared across two stimulus onset asynchronies (SOAs) (short and long) and two relatedness proportions (RP) (high and low) in a crossed design. Analysis of variance statistics revealed significant two- and three-way interactions between Group and SOA, Group and Condition, SOA and RP, and Group, SOA and RP. The participants with schizophrenia showed evidence of enhanced remote priming at the short SOA and low RP, combined with a reduction in the time course over which context could be maintained. There was some sensitivity to biasing contextual information at the short SOA, although the mechanism over which context served to update information appeared to be different from that in the controls. The participants with schizophrenia showed marked performance decrements at the long SOA (both low and high RP). Indices of remote priming at the short (but not the long) SOA correlated with both clinical ratings of thought disorder and with increasing length of illness. The results support and extend the hypothesis that schizophrenia is associated with concurrent increases in tonic dopamine activity and decreases in phasic dopamine activity. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research has suggested that the integrity of semantic processing may be compromised in Parkinson's disease (PD), which may account for difficulties in complex sentence comprehension. In order to investigate the time course and integrity of semantic activation in PD, 20 patients with PD and 23 healthy controls performed a lexical decision task based on the multi-priming paradigm. Semantic priming effects were measured across stimulus onset asynchronies of 250 ms, 600 ms, and 1200 ms. Further, PD participants performed an auditory comprehension task. The results revealed significantly different patterns of semantic priming for the PD group at the 250-ms and 1200-ms SOAs. In addition, a delayed time course of semantic activation was evident for PD patients with poor comprehension of complex sentences. These results provide further support to suggest that both automatic and controlled aspects of semantic activation may be compromised in PD. Furthermore, the results also suggest that some sentence comprehension deficits in PD may be related to a reduction in information processing speed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Refinement in software engineering allows a specification to be developed in stages, with design decisions taken at earlier stages constraining the design at later stages. Refinement in complex data models is difficult due to lack of a way of defining constraints, which can be progressively maintained over increasingly detailed refinements. Category theory provides a way of stating wide scale constraints. These constraints lead to a set of design guidelines, which maintain the wide scale constraints under increasing detail. Previous methods of refinement are essentially local, and the proposed method does not interfere very much with these local methods. The result is particularly applicable to semantic web applications, where ontologies provide systems of more or less abstract constraints on systems, which must be implemented and therefore refined by participating systems. With the approach of this paper, the concept of committing to an ontology carries much more force. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrating information in the molecular biosciences involves more than the cross-referencing of sequences or structures. Experimental protocols, results of computational analyses, annotations and links to relevant literature form integral parts of this information, and impart meaning to sequence or structure. In this review, we examine some existing approaches to integrating information in the molecular biosciences. We consider not only technical issues concerning the integration of heterogeneous data sources and the corresponding semantic implications, but also the integration of analytical results. Within the broad range of strategies for integration of data and information, we distinguish between platforms and developments. We discuss two current platforms and six current developments, and identify what we believe to be their strengths and limitations. We identify key unsolved problems in integrating information in the molecular biosciences, and discuss possible strategies for addressing them including semantic integration using ontologies, XML as a data model, and graphical user interfaces as integrative environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present ICICLE (Image ChainNet and Incremental Clustering Engine), a prototype system that we have developed to efficiently and effectively retrieve WWW images based on image semantics. ICICLE has two distinguishing features. First, it employs a novel image representation model called Weight ChainNet to capture the semantics of the image content. A new formula, called list space model, for computing semantic similarities is also introduced. Second, to speed up retrieval, ICICLE employs an incremental clustering mechanism, ICC (Incremental Clustering on ChainNet), to cluster images with similar semantics into the same partition. Each cluster has a summary representative and all clusters' representatives are further summarized into a balanced and full binary tree structure. We conducted an extensive performance study to evaluate ICICLE. Compared with some recently proposed methods, our results show that ICICLE provides better recall and precision. Our clustering technique ICC facilitates speedy retrieval of images without sacrificing recall and precision significantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Leximancer system is a relatively new method for transforming lexical co-occurrence information from natural language into semantic patterns in an unsupervised manner. It employs two stages of co-occurrence information extraction-semantic and relational-using a different algorithm for each stage. The algorithms used are statistical, but they employ nonlinear dynamics and machine learning. This article is an attempt to validate the output of Leximancer, using a set of evaluation criteria taken from content analysis that are appropriate for knowledge discovery tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we compare a well-known semantic spacemodel, Latent Semantic Analysis (LSA) with another model, Hyperspace Analogue to Language (HAL) which is widely used in different area, especially in automatic query refinement. We conduct this comparative analysis to prove our hypothesis that with respect to ability of extracting the lexical information from a corpus of text, LSA is quite similar to HAL. We regard HAL and LSA as black boxes. Through a Pearsonrsquos correlation analysis to the outputs of these two black boxes, we conclude that LSA highly co-relates with HAL and thus there is a justification that LSA and HAL can potentially play a similar role in the area of facilitating automatic query refinement. This paper evaluates LSA in a new application area and contributes an effective way to compare different semantic space models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial data are particularly useful in mobile environments. However, due to the low bandwidth of most wireless networks, developing large spatial database applications becomes a challenging process. In this paper, we provide the first attempt to combine two important techniques, multiresolution spatial data structure and semantic caching, towards efficient spatial query processing in mobile environments. Based on the study of the characteristics of multiresolution spatial data (MSD) and multiresolution spatial query, we propose a new semantic caching model called Multiresolution Semantic Caching (MSC) for caching MSD in mobile environments. MSC enriches the traditional three-category query processing in semantic cache to five categories, thus improving the performance in three ways: 1) a reduction in the amount and complexity of the remainder queries; 2) the redundant transmission of spatial data already residing in a cache is avoided; 3) a provision for satisfactory answers before 100% query results have been transmitted to the client side. Our extensive experiments on a very large and complex real spatial database show that MSC outperforms the traditional semantic caching models significantly

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Document ranking is an important process in information retrieval (IR). It presents retrieved documents in an order of their estimated degrees of relevance to query. Traditional document ranking methods are mostly based on the similarity computations between documents and query. In this paper we argue that the similarity-based document ranking is insufficient in some cases. There are two reasons. Firstly it is about the increased information variety. There are far too many different types documents available now for user to search. The second is about the users variety. In many cases user may want to retrieve documents that are not only similar but also general or broad regarding a certain topic. This is particularly the case in some domains such as bio-medical IR. In this paper we propose a novel approach to re-rank the retrieved documents by incorporating the similarity with their generality. By an ontology-based analysis on the semantic cohesion of text, document generality can be quantified. The retrieved documents are then re-ranked by their combined scores of similarity and the closeness of documents’ generality to the query’s. Our experiments have shown an encouraging performance on a large bio-medical document collection, OHSUMED, containing 348,566 medical journal references and 101 test queries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Web transaction data between Web visitors and Web functionalities usually convey user task-oriented behavior pattern. Mining such type of click-stream data will lead to capture usage pattern information. Nowadays Web usage mining technique has become one of most widely used methods for Web recommendation, which customizes Web content to user-preferred style. Traditional techniques of Web usage mining, such as Web user session or Web page clustering, association rule and frequent navigational path mining can only discover usage pattern explicitly. They, however, cannot reveal the underlying navigational activities and identify the latent relationships that are associated with the patterns among Web users as well as Web pages. In this work, we propose a Web recommendation framework incorporating Web usage mining technique based on Probabilistic Latent Semantic Analysis (PLSA) model. The main advantages of this method are, not only to discover usage-based access pattern, but also to reveal the underlying latent factor as well. With the discovered user access pattern, we then present user more interested content via collaborative recommendation. To validate the effectiveness of proposed approach, we conduct experiments on real world datasets and make comparisons with some existing traditional techniques. The preliminary experimental results demonstrate the usability of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

E-Business Information Systems (eBIS) are Information Systems (IS) that support organizations to realize their e-Business strategy resulting in various benefits. Therefore those systems strongly focus on fulfilment of the e-business requirements. In order to realise the expected benefits, organizations need to turn to their eBIS and measure the maturity of those systems. In doing so, they need to identify the status of those systems with regards to their suitability to support the e-Business strategy, while also identifying required IS improvements. In our research we aim to develop a maturity model, particularly dedicated to the area of e-Business Information Systems, which can be used easily and objectively to measure of the current maturity of any Information System that supports e-Business. This research-in-progress paper presents initial results of our research.