3 resultados para Stomatitis
em University of Queensland eSpace - Australia
Resumo:
During viral infection, fusion of the viral envelope with endosomal membranes and nucleocapsid release were thought to be concomitant events. We show here that for the vesicular stomatitis virus they occur sequentially, at two successive steps of the endocytic pathway. Fusion already occurs in transport intermediates between early and late endosomes, presumably releasing the nucleocapsid within the lumen of intra- endosomal vesicles, where it remains hidden. Transport to late endosomes is then required for the nucleocapsid to be delivered to the cytoplasm. This last step, which initiates infection, depends on the late endosomal lipid lysobisphosphatidic acid ( LBPA) and its putative effector Alix/ AIP1, and is regulated by phosphatidylinositol- 3-phosphate ( PtdIns( 3) P) signalling via the PtdIns( 3) P- binding protein Snx16. We conclude that the nucleocapsid is exported into the cytoplasm after the back- fusion of internal vesicles with the limiting membrane of late endosomes, and that this process is controlled by the phospholipids LBPA and PtdIns( 3) P and their effectors.
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
We completed the genome sequence of Lettuce necrotic yellows virus (LNYV) by determining the nucleotide sequences of the 4a (putative phosphoprotein), 4b, M (matrix protein), G (glycoprotein) and L (polymerase) genes. The genome consists of 12,807 nucleotides and encodes six genes in the order 3' leader-N-4a(P)-4b-M-G-L-5' trailer. Sequences were derived from clones of a cDNA library from LNYV genomic RNA and from fragments amplified using reverse transcription-polymerase chain reaction. The 4a protein has a low isoelectric point characteristic for rhabdovirus phosphoproteins. The 4b protein has significant sequence similarities with the movement proteins of capillo- and trichoviruses and may be involved in cell-to-cell movement. The putative G protein sequence contains a predicted 25 amino acids signal peptide and endopeptidase cleavage site, three predicted glycosylation sites and a putative transmembrane domain. The deduced L protein sequence shows similarities with the L proteins of other plant rhabdoviruses and contains polymerase module motifs characteristic for RNA-dependent RNA polymerases of negative-strand RNA viruses. Phylogenetic analysis of this motif among rhabdoviruses placed LNYV in a group with other sequenced cytorhabdoviruses, most closely related to Strawberry crinkle virus. (c) 2005 Elsevier B.V. All rights reserved.