21 resultados para Stochastic processes -- Mathematical models

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The robustness of mathematical models for biological systems is studied by sensitivity analysis and stochastic simulations. Using a neural network model with three genes as the test problem, we study robustness properties of synthesis and degradation processes. For single parameter robustness, sensitivity analysis techniques are applied for studying parameter variations and stochastic simulations are used for investigating the impact of external noise. Results of sensitivity analysis are consistent with those obtained by stochastic simulations. Stochastic models with external noise can be used for studying the robustness not only to external noise but also to parameter variations. For external noise we also use stochastic models to study the robustness of the function of each gene and that of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional-structural plant models that include detailed mechanistic representation of underlying physiological processes can be expensive to construct and the resulting models can also be extremely complicated. On the other hand, purely empirical models are not able to simulate plant adaptability and response to different conditions. In this paper, we present an intermediate approach to modelling plant function that can simulate plant response without requiring detailed knowledge of underlying physiology. Plant function is modelled using a 'canonical' modelling approach, which uses compartment models with flux functions of a standard mathematical form, while plant structure is modelled using L-systems. Two modelling examples are used to demonstrate that canonical modelling can be used in conjunction with L-systems to create functional-structural plant models where function is represented either in an accurate and descriptive way, or in a more mechanistic and explanatory way. We conclude that canonical modelling provides a useful, flexible and relatively simple approach to modelling plant function at an intermediate level of abstraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two stochastic production frontier models are formulated within the generalized production function framework popularized by Zellner and Revankar (Rev. Econ. Stud. 36 (1969) 241) and Zellner and Ryu (J. Appl. Econometrics 13 (1998) 101). This framework is convenient for parsimonious modeling of a production function with returns to scale specified as a function of output. Two alternatives for introducing the stochastic inefficiency term and the stochastic error are considered. In the first the errors are added to an equation of the form h(log y, theta) = log f (x, beta) where y denotes output, x is a vector of inputs and (theta, beta) are parameters. In the second the equation h(log y,theta) = log f(x, beta) is solved for log y to yield a solution of the form log y = g[theta, log f(x, beta)] and the errors are added to this equation. The latter alternative is novel, but it is needed to preserve the usual definition of firm efficiency. The two alternative stochastic assumptions are considered in conjunction with two returns to scale functions, making a total of four models that are considered. A Bayesian framework for estimating all four models is described. The techniques are applied to USDA state-level data on agricultural output and four inputs. Posterior distributions for all parameters, for firm efficiencies and for the efficiency rankings of firms are obtained. The sensitivity of the results to the returns to scale specification and to the stochastic specification is examined. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A stochastic model for solute transport in aquifers is studied based on the concepts of stochastic velocity and stochastic diffusivity. By applying finite difference techniques to the spatial variables of the stochastic governing equation, a system of stiff stochastic ordinary differential equations is obtained. Both the semi-implicit Euler method and the balanced implicit method are used for solving this stochastic system. Based on the Karhunen-Loeve expansion, stochastic processes in time and space are calculated by means of a spatial correlation matrix. Four types of spatial correlation matrices are presented based on the hydraulic properties of physical parameters. Simulations with two types of correlation matrices are presented.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modelling of froth transportation, as part of modelling of froth recovery, provides a scale-up procedure for flotation cell design. It can also assist in improving control of flotation operation. Mathematical models of froth velocity on the surface and froth residence time distribution in a cylindrical tank flotation cell are proposed, based on mass balance principle of the air entering the froth. The models take into account factors such as cell size, concentrate launder configuration, use of a froth crowder, cell operating conditions including froth height and air rate, and bubble bursting on the surface. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aerated stirred reactor (ASR) has been widely used in biochemical and wastewater treatment processes. The information describing how the activated sludge properties and operation conditions affect the hydrodynamics and mass transfer coefficient is missing in the literature. The aim of this study was to investigate the influence of flow regime, superficial gas velocity (U-G), power consumption unit (P/V-L), sludge loading, and apparent viscosity (pap) of activated sludge fluid on the mixing time (t(m)), gas hold-up (epsilon), and volumetric mass transfer coefficient (kLa) in an activated sludge aerated stirred column reactor (ASCR). The activated sludge fluid performed a non-Newtonian rheological behavior. The sludge loading significantly affected the fluid hydrodynamics and mass transfer. With an increase in the UG and P/V-L, the epsilon and k(L)a increased, and the t(m), decreased. The E, kLa, and tm,were influenced dramatically as the flow regime changed from homogeneous to heterogeneous patterns. The proposed mathematical models predicted the experimental results well under experimental conditions, indicating that the U-G, P/V-L, and mu(ap) had significant impact on the t(m) epsilon, and k(L)a. These models were able to give the tm, F, and kLa values with an error around +/- 8%, and always less than +/- 10%. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new method for producing a functional-structural plant model that simulates response to different growth conditions, yet does not require detailed knowledge of underlying physiology. The example used to present this method is the modelling of the mountain birch tree. This new functional-structural modelling approach is based on linking an L-system representation of the dynamic structure of the plant with a canonical mathematical model of plant function. Growth indicated by the canonical model is allocated to the structural model according to probabilistic growth rules, such as rules for the placement and length of new shoots, which were derived from an analysis of architectural data. The main advantage of the approach is that it is relatively simple compared to the prevalent process-based functional-structural plant models and does not require a detailed understanding of underlying physiological processes, yet it is able to capture important aspects of plant function and adaptability, unlike simple empirical models. This approach, combining canonical modelling, architectural analysis and L-systems, thus fills the important role of providing an intermediate level of abstraction between the two extremes of deeply mechanistic process-based modelling and purely empirical modelling. We also investigated the relative importance of various aspects of this integrated modelling approach by analysing the sensitivity of the standard birch model to a number of variations in its parameters, functions and algorithms. The results show that using light as the sole factor determining the structural location of new growth gives satisfactory results. Including the influence of additional regulating factors made little difference to global characteristics of the emergent architecture. Changing the form of the probability functions and using alternative methods for choosing the sites of new growth also had little effect. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haptotactic cell migration, a directed response to gradients of cell—extracellular matrix adhesion, is an important process in a number of biological phenomena such as wound healing and tumour cell invasion. Previously, mathematical models of haptotaxis have been developed on the premise that cells migrate in response to gradients in the density of the extracellular matrix. In this paper, we develop a novel mathematical model of haptotaxis which includes the adhesion receptors known as integrins and a description of their functional activation, local recruitment and protrusion as part of lamellipodia. Through the inclusion of integrins, the modelled cell matter is able to respond to a true gradient of cell–matrix adhesion, represented by functionally active integrins. We also show that previous matrix-mediated models are in fact a subset of the novel integrin-mediated models, characterised by specific choices of diffusion and haptotaxis coefficients in their model equations. Numerical solutions suggest the existence of travelling waves of cell migration that are confirmed via a phase plane analysis of a simplified model.

Relevância:

100.00% 100.00%

Publicador: