129 resultados para Stimulating Factor-receptor
em University of Queensland eSpace - Australia
Resumo:
The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1 (IL-3), and IL-5 are heterodimeric complexes consisting of cytokine-specific alpha subunits and a common signal-transducing beta subunit (h beta c). We have previously demonstrated the oncogenic potential of this group of receptors by identifying constitutively activating point mutations in the extracellular and transmembrane domains of h beta c. We report here a comprehensive screen of the entire h beta c molecule that has led to the identification of additional constitutive point mutations by virtue of their ability to confer factor independence on murine FDC-P1 cells. These mutations were clustered exclusively in a central region of h beta c that encompasses the extracellular membrane-proximal domain, transmembrane domain, and membrane-proximal region of the cytoplasmic domain. Interestingly, most h beta c mutants exhibited cell type-specific constitutive activity, with only two transmembrane domain mutants able to confer factor independence on both murine FDC-P1 and BAF-B03 cells. Examination of the biochemical properties of these mutants in FDC-P1 cells indicated that MAP kinase (ERK1/2), STAT, and JAK2 signaling molecules were constitutively activated. In contrast, only some of the mutant beta subunits were constitutively tyrosine phosphorylated. Taken together; these results highlight key regions involved in h beta c activation, dissociate h beta c tyrosine phosphorylation from MAP kinase and STAT activation, and suggest the involvement of distinct mechanisms by which proliferative signals can be generated by h beta c. (C) 1998 by The American Society of Hematology.
Resumo:
To date, several activating mutations have been discovered in the common signal-transducing subunit (h beta c) of the receptors for human granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Two of these, Fl Delta and 1374N, result in a 37 amino acid duplication and a single amino acid substitution in the extracellular domain of h beta c, respectively. A third, V449E, results in a single amino acid substitution in the transmembrane domain, Previous studies comparing the activity of these mutants in different hematopoietic cell lines imply that the transmembrane and extracellular mutations act by different mechanisms and suggest the requirement for cell type-specific molecules in signalling. To characterize the ability of these mutant hpc subunits to mediate growth and differentiation of primary cells and hence investigate their oncogenic potential, we have expressed all three mutants in primary murine hematopoietic cells using retroviral transduction. It is shown that, whereas expression of either extracellular hpc mutant confers factor-independent proliferation and differentiation on cells of the neutrophil and monocyte lineages only, expression of the transmembrane mutant does so on these lineages as well as the eosinophil, basophil, megakaryocyte, and erythroid lineages, Factor-independent myeloid precursors expressing the transmembrane mutant display extended proliferation in liquid culture and in some cases yielded immortalized cell lines. (C) 1997 by The American Society of Hematology.
Resumo:
The c-fms gene encodes the receptor for macrophage colony-stimulating factor (CSF-1). The gene is expressed selectively in the macrophage and trophoblast cell lineages. Previous studies have indicated that sequences in intron 2 control transcript elongation in tissue-specific and regulated expression of c-fms. In humans, an alternative promoter was implicated in expression of the gene in trophoblasts. We show that in mice, c-fms transcripts in trophoblasts initiate from multiple points within the 2-kilobase (kb) region flanking the first coding exon. A reporter gene construct containing 3.5 kb of 5' flanking sequence and the down-stream intron 2 directed expression of enhanced green fluorescent protein (EGFP) to both trophoblasts and macrophages. EGFP was detected in trophoblasts from the earliest stage of implantation examined at embryonic day 7.5. During embryonic development, EGFP highlighted the large numbers of c-fms-positive macrophages, including those that originate from the yolk sac. In adult mice, EGFP location Was consistent with known F4/80-positive macrophage populations, including Langerhans cells of the skin, and permitted convenient sorting of isolated tissue macrophages from disaggregated tissue. Expression of EGFP in transgenic mice was dependent on intron 2 as no lines with detectable EGFP expression were obtained where either all of intron 2 or a conserved enhancer element FIRE (the Fms intronic regulatory element) was removed. We have therefore defined the elements required to generate myeloid- and trophoblast-specific transgenes as well as a model system for the study of mononuclear phagocyte development and function. (C) 2003 by The American Society of Hematology.
Resumo:
Expression of the mouse transcription factor EC (Tfec) is restricted to the myeloid compartment, suggesting a function for Tfec in the development or function of these cells. However, mice lacking Tfec develop normally, indicating a redundant role for Tfec in myeloid cell development. We now report that Tfec is specifically induced in bone marrow-derived macrophages upon stimulation with the Th2 cytokines, IL-4 and IL-13, or LPS. LPS induced a rapid and transient up-regulation of Tfec mRNA expression and promoter activity, which was dependent on a functional NF-kappa B site. IL-4, however, induced a rapid, but long-lasting, increase in Tfec mRNA, which, in contrast to LPS stimulation, also resulted in detectable levels of Tfec protein. IL-4-induced transcription of Tfec was absent in macrophages lacking Stat6, and its promoter depended on two functional Stat6-binding sites. A global comparison of IL-4-induced genes in both wild-type and Tfec mutant macrophages revealed a surprisingly mild phenotype with only a few genes affected by Tfec deficiency. These included the G-CSFR (Csf3r) gene that was strongly up-regulated by IL-4 in wild-type macrophages and, to a lesser extent, in Tfec mutant macrophages. Our study also provides a general definition of the transcriptome in alternatively activated mouse macrophages and identifies a large number of novel genes characterizing this cell type.
Resumo:
The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMR alpha) and a common signal-transducing beta-subunit (hpc) that is shared with the interleukin-3 and -5 receptors, We have previously identified a constitutively active extracellular point mutant of hpc, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287), This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMR alpha (mGMR alpha) subunit, since introduction of mGMR alpha, but not hGMR alpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence, Experiments utilizing mouse/human chimeric GMR alpha subunits indicated that the species specificity lies in the extracellular domain of GMRa. Importantly, the requirement for mGMR alpha correlated with the ability of I374N (but not wild-type hpc) to constitutively associate with mGMRa. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMR alpha surface expression. Taken together, these findings suggest a critical role for association with GMR alpha in the constitutive activity of I374N.
Resumo:
During bacterial infections, the balance between resolution of infection and development of sepsis is dependent upon the macrophage response to bacterial products. We show that priming of murine bone marrow-derived macrophages (BMMs) with CSF-1 differentially regulates the response to two such stimuli, LPS and immunostimulatory (CpG) DNA. CSF-1 pretreatment enhanced IL-6, IL-12, and TNF-alpha production in response to LPS but suppressed the same response to CpG DNA. CSF-1 also regulated cytokine gene expression in response to CpG DNA and LPS; CpG DNA-induced IL-12 p40, IL-12 p35, and TNF-alpha mRNAs were all suppressed by CSF-1 pretreatment. CSF-1 pretreatment enhanced LPS-induced IL-12 p40 mRNA but not TNF-alpha and IL-12 p35 mRNAs, suggesting that part of the priming effect is posttranscriptional. CSF-1 pretreatment also suppressed CpG DNA-induced nuclear translocation of NF-kappaB and phosphorylation of the mitogen-activated protein kinases p38 and extracellular signal-related kinases-1/2 in BMMs, indicating that early events in CpG DNA signaling were regulated by CSF-1. Expression of Toll-like receptor (TLR)9, which is necessary for responses to CpG DNA, was markedly suppressed by CSF-1 in both BMMs and thioglycolate-elicited peritoneal macrophages. CSF-1 also down-regulated expression of TLR1, TLR2, and TLR6, but not the LPS receptor, TLR4, or TLR5. Hence, CSF-1 may regulate host responses to pathogens through modulation of TLR expression. Furthermore, these results suggest that CSF-1 and CSF-1R antagonists may enhance the efficacy of CpG DNA in vivo.
Resumo:
In the toothless (tl/tl) osteopetrotic rat, teeth form but fail to erupt. Treatment of tl/tl rats with colony-stimulating factor-1 (CSF-1) activates bone resorption by osteoclasts, permits tooth eruption, and up-regulates the immunoreactivity of bone marrow mononuclear cells to growth hormone receptor (GHr) and insulin-like growth factor (IGF)-I. This study examined the distribution of tartrate-resistant acid phosphatase (TRAP) and immunoreactivity for GHr and IGF-I in osteoclast-like cells located on the alveolar bone margin, adjacent to the lower first molar crown, in 14-day-old normal and tl/tl rats, following treatment with CSF-1. Osteoclast-like cells demonstrated a positive reaction for TRAP, GHr, and IGF-I in all groups. However, in tl/tl tissue, osteoclast-like cells were generally negative for GHr. There was no significant difference in the total number of TRAP, GHr, and IGF-I-positive osteoclast-like cells on the adjacent bone margin in normal, normal treated with CSF-1, and tl/tl rats. CSF-1 treatment of the tl/tl rat significantly increased the total number of osteoclast-like cells, which were positive for TRAP (p < 0.001), GHr (p < 0.05) and IGF-I (P < 0.01).
Resumo:
The lineage of dendritic cells (DC), and in particular their relationship to monocytes and macrophages, remains obscure. Furthermore, the requirement for the macrophage growth factor CSF-1 during DC homeostasis is unclear. Using a transgenic mouse in which the promoter for the CSF-1R (c-fms) directs the expression of enhanced GFP in cells of the myeloid lineage, we determined that although the c-fms promoter is inactive in DC precursors, it is up-regulated in all DC subsets during differentiation. Furthermore, plasmacytoid DC and all CD11c(high) DC subsets are reduced by 50-70% in CSF-1-deficient osteopetrotic mice, confirming that CSF-1 signaling is required for the optimal differentiation of DC in vivo. These data provide additional evidence that the majority of tissue DC is of myeloid origin during steady state and supports a close relationship between DC and macrophage biology in vivo.
Resumo:
We report on a patient with a severe premature calvarial synostosis and epidermal hyperplasia. The phenotype was consistent with that of a mild presentation of Beare-Stevenson syndrome but molecular analysis of the IgIII-transmembrane linker region and the transmembrane domain of the gene encoding the FGFR2 receptor, revealed wild-type sequence only. Subsequently, molecular analysis of the FGFR3 receptor gene identified a heterozygous P250R missense mutation in both the proposita and her mildly affected father. This communication extends the clinical spectrum of the FGFR3 P250R mutation to encompass epidermal hyperplasia and documents the phenomenon of activated FGFR receptors stimulating common downstream developmental pathways, resulting in overlapping clinical outcomes. (C) 2001 Wiley-Liss, Inc.
Resumo:
The granulocyte colony-stimulating factor (G-CSF) and Fit-3 receptor agonist progenipoietin-1 (ProGP-1) has potent effects on dendritic cell (DC) expansion and may be an alternative to G-CSF for the mobilization of stem cells for allogeneic stem cell transplantation (SCT). We studied the ability of stem cell grafts mobilized with this agent to induce graft-versus-host disease (GVHD) to minor and major histocompatibility antigens in the well-described B6 --> B6D2F1 SCT model. ProGP-1, G-CSIF, or control diluent was administered to donor B6 mice. ProGP-1 expanded all cell lineages in the spleen, and unseparated splenocytes from these animals produced large amounts of interleukin 10 (IL-10) and transforming growth factor beta (TGFbeta) whereas the expression of T-cell adhesion molecules was diminished. Transplantation survival was 0%, 50%, and 90% in recipients of control-, G-CSF-, and ProGP-1-treated allogeneic donor splenocytes, respectively (P < .0001). Donor pretreatment with ProGP-1 allowed a 4-fold escalation in T-cell dose over that possible with G-CSF. Donor CD4 T cells from allogeneic SCT recipients of ProGP-1 splenocytes demonstrated an anergic response to host antigen, and cytokine production (interferon gamma [IFNγ], IL-4, and IL-10) was also reduced while CD8 T-cell cytotoxicity to host antigens remained intact. Neither CD11c(hi) DCs nor CD11c(dim)/B220(hi) DCs from ProGP-1-treated animals conferred protection from GVHD when added to control spleen. Conversely, when equal numbers of purified T cells from control-, G-CSF-, or ProGP-1-treated allogeneic donors were added to allogeneic T-cell-depleted control spleen, survival at day 60 was 0%, 15%, and 90%, respectively (P < .0001). The improved survival in recipients of ProGP-1 T cells was associated with reductions in systemic tumor necrosis factor alpha generation and GVHD of the gastrointestinal tract. We conclude that donor pretreatment with ProGP-1 is superior to G-CSIF for the prevention of GVHD after allogeneic SCT, primarily due to incremental affects on T-cell phenotype and function
Resumo:
Changes in blood dendritic cell (BDC) counts (CD123(hi)BDC and CD11c(+)BDC) and expression of CD62L, CCR7, and CD49d were analyzed in healthy donors, multiple myeloma (MM), and non-Hodgkin lymphoma (NHL) patients, who received granulocyte-colony stimulating factor (G-CSF) containing peripheral blood stem cell (PBSC) mobilization protocols. Low-dose G-CSF in healthy donors (8-10 mug/ kg/d subcutaneously) and high-dose G-CSF in patients (30 mug/kg/d) increased CD123(hi)BDC (2- to 22-fold, mean 3.7 x 10(6)/ L-17.7 x 10(6)/L and 1.9 x 10(6)/L-12.0 x 10(6)/ L) in healthy donors and MM but decreased CD11c(+)BDC (2- to 10-fold, mean 5.7 x 10(6)/L-1.6 x 10(6)/L) in NHL patients, on the day of apheresis, compared with steady state. After apheresis, CD123(hi)BDC counts remained high, whereas low CD11c(+)BDC counts tended to recover in the following 2-5 days. Down-regulation of CD62L and up-regulation of CCR7 on CD123(hi)BDC were found in most healthy donors and MM patients. CD49d expression was unchanged. Thus, PBSC mobilization may change BDC counts by altering molecules necessary for BDC homing from blood into tissues.
Resumo:
The effects of conjugating cholesterol to either or both ends of a phosphorothioate (PS) oligonucleotide were analyzed in terms of cellular uptake and antisense efficacy. The oligo sequence was directed against the p75 nerve growth factor receptor (p75), and was tested in differentiated PC12 cells, which express high levels of this protein. The addition of a single cholesteryl group to the 5'-end significantly increased cellular uptake and improved p75 mRNA downregulation compared with the unmodified PS oligo, However, only a minor degree of downregulation of p75 protein was obtained with 5' cholesteryl oligos, Three different linkers was used to attach the 5' cholesteryl group but were found not to have any impact on efficacy. Addition of a single cholesteryl group to the 3'-end led to greater p75 mRNA downregulation (31%) and p75 protein downregulation (28%) than occurred with the 5' cholesteryl oligos. The biggest improvement in antisense efficacy, both at the mRNA and protein levels, was obtained from the conjugation of cholesterol to both ends of the oligo. One of the bis-cholesteryl oligos was nearly as effective as cycloheximide at decreasing synthesis of p75, The bis-cholesteryl oligos also displayed significant efficacy at 1 mu M, whereas the other oligos required 5 mu M to be effective. The enhanced efficacy of bis-cholesteryl oligos is likely to be due to a combination of enhanced cellular uptake and resistance to both 5' and 3' exonucleases.
Resumo:
FIBROBLAST growth factors (FGFs) are critical for normal development of the organ of Corti, and may also protect hair cells from ototoxic damage. Four different fibroblast growth factors are known, three of which have different splice variants in the extracellular immunoglobin-like (Ig) III FGF-binding domain, giving different patterns of sensitivity to the different FGFs. Analysis of a cDNA library of rat outer hair cells by the polymerase chain reaction, using isoform specific primers, showed expression only of FGF receptor 3, splice variant IIIc. This allows us to predict the pattern of sensitivity to applied FGFs, may be useful in targeting outer hair cells selectively during an FGF-based strategy for cochlear therapy. (C) 1998 Lippincott Williams & Wilkins.