10 resultados para Steiner Triple Systems

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Denote the set of 21 non-isomorphic cubic graphs of order 10 by L. We first determine precisely which L is an element of L occur as the leave of a partial Steiner triple system, thus settling the existence problem for partial Steiner triple systems of order 10 with cubic leaves. Then we settle the embedding problem for partial Steiner triple systems with leaves L is an element of L. This second result is obtained as a corollary of a more general result which gives, for each integer v greater than or equal to 10 and each L is an element of L, necessary and sufficient conditions for the existence of a partial Steiner triple system of order v with leave consisting of the complement of L and v - 10 isolated vertices. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any partial Steiner triple system of order u can be embedded in a Steiner triple system of order v if v equivalent to 1, 3 (mod 6) and v greater than or equal to 3u - 2. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that there exists a triangle decomposition of the graph obtained from the complete graph of order v by removing the edges of two vertex disjoint complete subgraphs of orders u and w if and only if u, w, and v are odd, ((v)(2)) - ((u)(2)) - ((w)(2)) equivalent to 0 (mod 3), and v >= w + u + max {u, w}. Such decompositions are equivalent to group divisible designs with block size 3, one group of size u, one group of size w, and v - u - w groups of size 1. This result settles the existence problem for Steiner triple systems having two disjoint specified subsystems, thereby generalizing the well-known theorem of Doyen and Wilson on the existence of Steiner triple systems with a single specified subsystem. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 4-cycle system of order n, denoted by 4CS(n), exists if and only if nequivalent to1 (mod 8). There are four configurations which can be formed by two 4-cycles in a 4CS(n). Formulas connecting the number of occurrences of each such configuration in a 4CS(n) are given. The number of occurrences of each configuration is determined completely by the number d of occurrences of the configuration D consisting of two 4-cycles sharing a common diagonal. It is shown that for every nequivalent to1 (mod 8) there exists a 4CS(n) which avoids the configuration D, i.e. for which d=0. The exact upper bound for d in a 4CS(n) is also determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For all odd integers n greater than or equal to 1, let G(n) denote the complete graph of order n, and for all even integers n greater than or equal to 2 let G,, denote the complete graph of order n with the edges of a 1-factor removed. It is shown that for all non-negative integers h and t and all positive integers n, G, can be decomposed into h Hamilton cycles and t triangles if and only if nh + 3t is the number of edges in G(n). (C) 2004 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),..., c(k). If an m-cycle C in G has n(i) vertices coloured c(i), i = 1, 2,..., k, and (i) - n(j) less than or equal to 1 for any i, j is an element of {1, 2,..., k}, then C is equitably k-coloured. An m-cycle decomposition C of a graph G is equitably k-colourable if the vertices of G can be coloured so that every m-cycle in C is equitably k-coloured. For m = 4,5 and 6, we completely settle the existence problem for equitably 3-colourable m-cycle decompositions of complete graphs and complete graphs with the edges of a 1-factor removed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We continue our study of partitions of the set of all ((v)(3)) triples chosen from a v-set into pairwise disjoint planes with three points per line. We develop further necessary conditions for the existence of partitions of such sets into copies of PG(2, 2) and copies of AG(2, 3), and deal with the cases v = 13, 14, 15 and 17. These partitions, together with those already known for v = 12, 16 and 18, then become starters for recursive constructions of further infinite families of partitions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A K-t,K-t-design of order n is an edge-disjoint decomposition of K-n into copies of K-t,K-t. When t is odd, an extended metamorphosis of a K-t,K-t-design of order n into a 2t-cycle system of order n is obtained by taking (t - 1)/2 edge-disjoint cycles of length 2t from each K-t,K-t block, and rearranging all the remaining 1-factors in each K-t,K-t block into further 2t-cycles. The 'extended' refers to the fact that as many subgraphs isomorphic to a 2t-cycle as possible are removed from each K-t,K-t block, rather than merely one subgraph. In this paper an extended metamorphosis of a K-t,K-t-design of order congruent to 1 (mod 4t(2)) into a 2t-cycle system of the same order is given for all odd t > 3. A metamorphosis of a 2-fold K-t,K-t-design of any order congruent to 1 (mod 4t(2)) into a 2t-cycle system of the same order is also given, for all odd t > 3. (The case t = 3 appeared in Ars Combin. 64 (2002) 65-80.) When t is even, the graph K-t,K-t is easily seen to contain t/2 edge-disjoint cycles of length 2t, and so the metamorphosis in that case is straightforward. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare theoretically the tripartite entanglement available from the use of three concurrent x(2) nonlinearities and three independent squeezed states mixed on beamsplitters, using an appropriate version of the van Loock-Furusawa inequalities. We also define three-mode generalizations of the Einstein-Podolsky-Rosen paradox which are an alternative for demonstrating the inseparability of the density matrix.