20 resultados para Steady state process

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Achievement of steady state during indirect calorimetry measurements of resting energy expenditure (REE) is necessary to reduce error and ensure accuracy in the measurement. Steady state is often defined as 5 consecutive min (5-min SS) during which oxygen consumption and carbon dioxide production vary by +/-10%. These criteria, however, are stringent and often difficult to satisfy. This study aimed to assess whether reducing the time period for steady state (4-min SS or 3-min SS) produced measurements of REE that were significantly different from 5-min SS. REE was measured with the use of open-circuit indirect calorimetry in 39 subjects, of whom only 21 (54%) met the 5-min SS criteria. In these 21 subjects, median biases in REE between 5-min SS and 4-min SS and between 5-min SS and 3-min SS were 0.1 and 0.01%, respectively. For individuals, 4-min SS measured REE within a clinically acceptable range of +/-2% of 5-min SS, whereas 3-min SS measured REE within a range of -2-3% of 5-min SS. Harris-Benedict prediction equations estimated REE for individuals within +/-20-30% of 5-min SS. Reducing the time period of steady state to 4 min produced measurements of REE for individuals that were within clinically acceptable, predetermined limits. The limits of agreement for 3-min SS fell outside the predefined limits of +/-2%; however, both 4-min SS and 3-min SS criteria greatly increased the proportion of subjects who satisfied steady state within smaller limits than would be achieved if relying on prediction equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheology of 10 Australian honeys was investigated at temperatures -15C to 0C by a strain-controlled rheometer. The honeys exhibited Newtonian behavior irrespective of the temperature, and follow the Cox-Merz rule. G/G' and omega are quadratically related, and the crossover frequencies for liquid to solid transformation and relaxation times were obtained. The composition of the honeys correlates well (r(2) > 0.83) with the viscosity, and with 24 7 data sets (Australian and Greek honeys), the following equation was obtained: mu = 1.41 x 10(-17) exp [-1.20M + 0.01F - 0.0G + (18.6 X 10(3)/T)] The viscosity of the honeys showed a strong dependence on temperature, and four models were examined to describe this. The models gave good fits (r(2) > 0.95), but better fits were obtained for the WLF model using T-g of the honeys and mu(g) = 10(11) Pa.s. The WLF model with its universal values poorly predicted the viscosity, and the implications of the measured rheological behaviors of the honeys in their processing and handling are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rotating disk voltammetry is routinely used to study electrochemically driven enzyme catalysis because of the assumption that the method produces a steady-state system. This assumption is based on the sigmoidal shape of the voltammograms. We have introduced an electrochemical adaptation of the King-Altman method to simulate voltammograms in which the enzyme catalysis, within an immobilized enzyme layer, is steadystate. This method is readily adaptable to any mechanism and provides a readily programmable means of obtaining closed form analytical equations for a steady-state system. The steady-state simulations are compared to fully implicit finite difference (FIFD) simulations carried out without any steady-state assumptions. On the basis of our simulations, we conclude that, under typical experimental conditions, steady-state enzyme catalysis is unlikely to occur within electrode-immobilized enzyme layers and that typically sigmoidal rotating disk voltammograms merely reflect a mass transfer steady state as opposed to a true steady state of enzyme intermediates at each potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the number of computer-assisted methods described for the derivation of steady-state equations of enzyme systems, most of them are focused on strict steady-state conditions or are not able to solve complex reaction mechanisms. Moreover, many of them are based on computer programs that are either not readily available or have limitations. We present here a computer program called WinStes, which derives equations for both strict steady-state systems and those with the assumption of rapid equilibrium, for branched or unbranched mechanisms, containing both reversible and irreversible conversion steps. It solves reaction mechanisms involving up to 255 enzyme species, connected by up to 255 conversion steps. The program provides all the advantages of the Windows programs, such as a user-friendly graphical interface, and has a short computation time. WinStes is available free of charge on request from the authors. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The suction profile of a desiccating soil is dependent on the water table depth, the soil-water retention characteristics, and the climatic conditions. In this paper, an unsaturated flow model, which simulates both liquid and vapour flow, was used to investigate the effects of varying the water table depth and the evaporation rate on the evaporative fluxes from a desiccating tailings deposit under steady-state conditions. Results obtained showed that at a critical evaporation rate, beyond which evaporation is no longer dictated by climatic conditions, the matric suction profiles remain basically unchanged. The critical evaporation rate varies inversely with the water table depth. It is associated with the maximum evaporative flux that might be extracted from a soil at steady-state conditions. The time required to establish steady-state conditions is directly proportional to the water table depth, and it acquires a maximum value at the critical evaporation rate. A detailed investigation of the movement of the drying front demonstrated the significance of attaining a matric suction of about 3000 kPa on the contribution to flow in the vapour phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes effluent flow dynamics within a septic absorption system and the prediction of flow through the biomat and sub-biomat zone. Using soil hydraulic properties in a one dimensional model we demonstrate how soil hydraulic properties interact with biomat resistances to determine long-term acceptance rate (LTAR). The LTAR is a key parameter used in the Australian and New Zealand Standard AS1547:2000 to calculate the area of trench required to ensure trenches are not overloaded. Results show that several orders of magnitude variation in saturated hydraulic conductivity (Ks) collapse to a one order of magnitude variation in LTAR. These results are calculated from a model using basic flow theory, allowing LTAR to be estimated for any combination of biomat resistance and soil hydraulic properties. To increase the reliability of prediction of septic trench hydrology, HYDRUS 2D was used to model two dimensional flow. For more permeable soils, the exfiltration zone above sidewall biomat growth is shown to be a key pathway for excess effluent flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate multipartite entanglement in relation to the process of quantum state exchange. In particular, we consider such entanglement for a certain pure state involving two groups of N trapped atoms. The state, which can be produced via quantum state exchange, is analogous to the steady-state intracavity state of the subthreshold optical nondegenerate parametric amplifier. We show that, first, it possesses some 2N-way entanglement. Second, we place a lower bound on the amount of such entanglement in the state using a measure called the entanglement of minimum bipartite entropy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research was aimed at developing a technology to combine the production of useful microfungi with the treatment of wastewater from food processing. A recycle bioreactor equipped with a micro-screen was developed as a wastewater treatment system on a laboratory scale to contain a Rhizopus culture and maintain its dominance under non-aseptic conditions. Competitive growth of bacteria was observed, but this was minimised by manipulation of the solids retention time and the hydraulic retention time. Removal of about 90% of the waste organic material (as BOD) from the wastewater was achieved simultaneously. Since essentially all fungi are retained behind the 100 mum aperture screen, the solids retention time could be controlled by the rate of harvesting. The hydraulic retention time was employed to control the bacterial growth as the bacteria were washed through the screen at a short HRT. A steady state model was developed to determine these two parameters. This model predicts the effluent quality. Experimental work is still needed to determine the growth characteristics of the selected fungal species under optimum conditions (pH and temperature).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A steady state mathematical model for co-current spray drying was developed for sugar-rich foods with the application of the glass transition temperature concept. Maltodextrin-sucrose solution was used as a sugar-rich food model. The model included mass, heat and momentum balances for a single droplet drying as well as temperature and humidity profile of the drying medium. A log-normal volume distribution of the droplets was generated at the exit of the rotary atomizer. This generation created a certain number of bins to form a system of non-linear first-order differential equations as a function of the axial distance of the drying chamber. The model was used to calculate the changes of droplet diameter, density, temperature, moisture content and velocity in association with the change of air properties along the axial distance. The difference between the outlet air temperature and the glass transition temperature of the final products (AT) was considered as an indicator of stickiness of the particles in spray drying process. The calculated and experimental AT values were close, indicating successful validation of the model. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis,' a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA. A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs. (C) 2004 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It has been shown that P auxiliary subunits increase current amplitude in voltage-dependent calcium channels. In this study, however, we found a hovel inhibitory effect of beta3 Subunit on macroscopic Ba2+ currents through recombinant N- and R-type calcium channels expressed in Xenopus oocytes. Overexpressed beta3 (12.5 ng/ cell cRNA) significantly suppressed N- and R-type, but not L-type, calcium channel currents at physiological holding potentials (HPs) of -60 and -80 mV At a HP of -80 mV, coinjection of various concentrations (0-12.5 ng) of the beta3 with Ca,.2.2alpha(1) and alpha(2)delta enhanced the maximum conductance of expressed channels at lower beta3 concentrations but at higher concentrations (>2.5 ng/cell) caused a marked inhibition. The beta3-induced Current suppression was reversed at a HP of - 120 mV, suggesting that the inhibition was voltage dependent. A high concentration of Ba-2divided by (40 mM) as a charge carrier also largely diminished the effect of P3 at -80 mV Therefore, experimental conditions (HP, divalent cation concentration, and P3 subunit concentration) approaching normal physiological conditions were critical to elucidate the full extent of this novel P3 effect. Steady-state inactivation curves revealed that N-type channels exhibited closed-state inactivation without P3, and that P3 caused an similar to40 mV negative shift of the inactivation, producing a second component with an inactivation midpoint of approximately -85 mV The inactivation of N-type channels in the presence of a high concentration (12.5 ng/cell) of P3 developed slowly and the time-dependent inactivation curve was best fit by the sum of two exponential functions with time constants of 14 s and 8.8 min at -80 mV Similar ultra-slow inactivation was observed for N-type channels Without P3. Thus, P3 can have a profound negative regulatory effect on N-type (and also R-type) calcium channels by Causing a hyperpolarizing shift of the inactivation without affecting ultra-slow and closed-state inactivation properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For two two-level atoms coupled to a single Bosonic mode that is driven and heavily damped, the steady state can be entangled by resonantly driving the system [S. Schneider and G. J. Milburn, Phys. Rev. A 65, 042107 (2002)]. We present a scheme to significantly increase the steady-state entanglement by using homodyne-mediated feedback, in which the Bosonic mode is that of an electromagnetic cavity, the output of which is measured and the resulting homodyne photocurrent is used to modulate the field driving the qubits. Such feedback can increase the nonlinear response to both the decoherence process of the two-qubit system and the coherent evolution of individual qubits. We present the properties of the entangled states using the SO(3) Q function.