37 resultados para Static Vehicle Tests.
em University of Queensland eSpace - Australia
Resumo:
In response to recent reports of contamination of the nearshore marine environment along the Queensland coast by herbicides (including areas inside the Great Barrier Reef Marine Park), an ecotoxicological assessment was conducted of the impact of the herbicides diuron and atrazine on scleractinian corals. Pulse-amplitude modulated (PAM) chlorophyll fluorescence techniques were used to assess the herbicide effects on the symbiotic dinoflagellates within the tissues (in hospite) of 4 species of coral (Acropora formosa, Montipora digitata, Porites cylindrica, Seriatopora hystrix) in static toxicity tests, and in freshly isolated symbiotic dinoflagellates from Stylophora pistillata. Using change in the effective quantum yield (DeltaF/F-m') as an effect criterion, diuron (no observable effect concentration, NOEC = 0.3 mug 1(-1); lowest observable effect concentration, LOEC = 1 mug 1(-1); median effective concentration, EC50 4 to 6 mug 1(-1)) was found to be more toxic than atrazine (NOEC = 1 mug 1(-1), LOEC = 3 mug 1(-1), EC50 40 to 90 mug 1(-1)) in short-term (10 h) toxicity tests. In the tests with isolated algae, significant reductions in DeltaF/F-m' were recorded as low as 0.25 mug 1(-1) diuron (LOEC, EC50 = 5 mug 1(-1)). Time-course experiments indicated that the effects of diuron were rapid and reversible. At 10 mug 1(-1) diuron, DeltaF/F-m' was reduced by 25% in 20 to 30 min, and by 50% in 60 to 90 min. Recovery of DeltaF/F-m' in corals exposed to 10 mug 1(-1) diuron and then transferred to running seawater was slower, returning to within 10% of control values inside 1 to 7 h. The effect of a reduction in salinity (35 to 27%) on diuron toxicity (at 1 and 3 mug 1(-1) diuron) was tested to examine the potential consequences of contaminated coastal flood plumes inundating inshore reefs. DeltaF/F-m' was reduced in the diuron-exposed corals, but there was no significant interaction between diuron and reduced salinity seawater within the 10 h duration of the test. Exposure to higher (100 and 1000 mug 1(-1)) diuron concentrations for 96 h caused a reduction in DeltaF/F-m' the ratio variable to maximal fluorescence (F,1F.), significant loss of symbiotic dinoflagellates and pronounced tissue retraction, causing the corals to pale or bleach. The significance of the results in relation to diuron contamination of the coastal marine environment from terrestrial sources (mainly agricultural) and marine sources (antifouling paints) are discussed.
Resumo:
The final-year project for Mechanical & Space Engineering students at UQ often involves the design and flight testing of an experiment. This report describes the design and use of a simple data logger that should be suitable for collecting data from the students' flight experiments. The exercise here was taken as far as the construction of a prototype device that is suitable for ground-based testing, say, the static firing of a hybrid rocket motor.
Resumo:
Some motor tasks can be completed, quite literally, with our eyes shut. Most people can touch their nose without looking or reach for an object after only a brief glance at its location. This distinction leads to one of the defining questions of movement control: is information gleaned prior to starting the movement sufficient to complete the task (open loop), or is feedback about the progress of the movement required (closed loop)? One task that has commanded considerable interest in the literature over the years is that of steering a vehicle, in particular lane-correction and lane-changing tasks. Recent work has suggested that this type of task can proceed in a fundamentally open loop manner [1 and 2], with feedback mainly serving to correct minor, accumulating errors. This paper reevaluates the conclusions of these studies by conducting a new set of experiments in a driving simulator. We demonstrate that, in fact, drivers rely on regular visual feedback, even during the well-practiced steering task of lane changing. Without feedback, drivers fail to initiate the return phase of the maneuver, resulting in systematic errors in final heading. The results provide new insight into the control of vehicle heading, suggesting that drivers employ a simple policy of “turn and see,” with only limited understanding of the relationship between steering angle and vehicle heading.
Resumo:
The aim of this study was to examine the reliability and validity of field tests for assessing physical function in mid-aged and young-old people (55–70 y). Tests were selected that required minimal space and equipment and could be implemented in multiple field settings such as a general practitioner's office. Nineteen participants completed 2 field and 1 laboratory testing sessions. Intra-class correlations showed good reliability for the tests of upper body strength (lift and reach, R= .66), lower body strength (sit to stand, R= .80) and functional capacity (Canadian Step Test, R= .92), but not for leg power (single timed chair rise, R= .28). There was also good reliability for the balance test during 3 stances: parallel (94.7% agreement), semi-tandem (73.7%), and tandem (52.6%). Comparison of field test results with objective laboratory measures found good validity for the sit to stand (cf 1RM leg press, Pearson r= .68, p< .05), and for the step test (cf PWC140, r= −.60, p< .001), but not for the lift and reach (cf 1RM bench press, r= .43, p> .05), balance (r= −.13, −.18, .23) and rate of force development tests (r= −.28). It was concluded that the lower body strength and cardiovascular function tests were appropriate for use in field settings with mid-aged and young-old adults.
Resumo:
The Direct Simulation Monte Carlo (DSMC) method is used to simulate the flow of rarefied gases. In the Macroscopic Chemistry Method (MCM) for DSMC, chemical reaction rates calculated from local macroscopic flow properties are enforced in each cell. Unlike the standard total collision energy (TCE) chemistry model for DSMC, the new method is not restricted to an Arrhenius form of the reaction rate coefficient, nor is it restricted to a collision cross-section which yields a simple power-law viscosity. For reaction rates of interest in aerospace applications, chemically reacting collisions are generally infrequent events and, as such, local equilibrium conditions are established before a significant number of chemical reactions occur. Hence, the reaction rates which have been used in MCM have been calculated from the reaction rate data which are expected to be correct only for conditions of thermal equilibrium. Here we consider artificially high reaction rates so that the fraction of reacting collisions is not small and propose a simple method of estimating the rates of chemical reactions which can be used in the Macroscopic Chemistry Method in both equilibrium and non-equilibrium conditions. Two tests are presented: (1) The dissociation rates under conditions of thermal non-equilibrium are determined from a zero-dimensional Monte-Carlo sampling procedure which simulates ‘intra-modal’ non-equilibrium; that is, equilibrium distributions in each of the translational, rotational and vibrational modes but with different temperatures for each mode; (2) The 2-D hypersonic flow of molecular oxygen over a vertical plate at Mach 30 is calculated. In both cases the new method produces results in close agreement with those given by the standard TCE model in the same highly nonequilibrium conditions. We conclude that the general method of estimating the non-equilibrium reaction rate is a simple means by which information contained within non-equilibrium distribution functions predicted by the DSMC method can be included in the Macroscopic Chemistry Method.
Resumo:
The linear relationship between work accomplished (W-lim) and time to exhaustion (t(lim)) can be described by the equation: W-lim = a + CP.t(lim). Critical power (CP) is the slope of this line and is thought to represent a maximum rate of ATP synthesis without exhaustion, presumably an inherent characteristic of the aerobic energy system. The present investigation determined whether the choice of predictive tests would elicit significant differences in the estimated CP. Ten female physical education students completed, in random order and on consecutive days, five art-out predictive tests at preselected constant-power outputs. Predictive tests were performed on an electrically-braked cycle ergometer and power loadings were individually chosen so as to induce fatigue within approximately 1-10 mins. CP was derived by fitting the linear W-lim-t(lim) regression and calculated three ways: 1) using the first, third and fifth W-lim-t(lim) coordinates (I-135), 2) using coordinates from the three highest power outputs (I-123; mean t(lim) = 68-193 s) and 3) using coordinates from the lowest power outputs (I-345; mean t(lim) = 193-485 s). Repeated measures ANOVA revealed that CPI123 (201.0 +/- 37.9W) > CPI135 (176.1 +/- 27.6W) > CPI345 (164.0 +/- 22.8W) (P < 0.05). When the three sets of data were used to fit the hyperbolic Power-t(lim) regression, statistically significant differences between each CP were also found (P < 0.05). The shorter the predictive trials, the greater the slope of the W-lim-t(lim) regression; possibly because of the greater influence of 'aerobic inertia' on these trials. This may explain why CP has failed to represent a maximal, sustainable work rate. The present findings suggest that if CP is to represent the highest power output that an individual can maintain for a very long time without fatigue then CP should be calculated over a range of predictive tests in which the influence of aerobic inertia is minimised.
Resumo:
This study examined the relationship between isokinetic hip extensor/hip flexor strength, 1-RM squat strength, and sprint running performance for both a sprint-trained and non-sprint-trained group. Eleven male sprinters and 8 male controls volunteered for the study. On the same day subjects ran 20-m sprints from both a stationary start and with a 50-m acceleration distance, completed isokinetic hip extension/flexion exercises at 1.05, 4.74, and 8.42 rad.s(-1), and had their squat strength estimated. Stepwise multiple regression analysis showed that equations for predicting both 20-m maximum velocity nm time and 20-m acceleration time may be calculated with an error of less than 0.05 sec using only isokinetic and squat strength data. However, a single regression equation for predicting both 20-m acceleration and maximum velocity run times from isokinetic or squat tests was not found. The regression analysis indicated that hip flexor strength at all test velocities was a better predictor of sprint running performance than hip extensor strength.
Resumo:
Rapid and sensitive polymerase chain reaction (PCR) methods ape described for determination of the two 16 S rDNA subgroups of Ralstonia solanacearum, the causal agent of bacterial wilt. A third subgroup consisting of Indonesian R. solanacearum isolates belonging to Division II, the blood disease bacterium and Pseudomonas syzygii can also be identified. Primers were designed to sequences within R, solanacearum 16 S rDNA (equivalent to Escherichia coli 16 S rDNA positions 74-97, 455-475, 1454-1474), and the internal transcribed spacer region between the 16 S and 23 S rDNA genes. Different combinations of forward and reverse primers allowed selective PCR amplification of (a) R. solanacearum Division I (biovars 3, 4 and 5), (b) Division TI (biovars 1, N2, and 2) including the blood disease bacterium and P. syzygii, or (c) amplification of Division II only except for five biovar 1, 2 or N2 isolates of R. solanacearum from Indonesia, P. syzygii and the BDB. A total of 104 R. solanacearum, 14 blood disease bacterium and 10 P. syzygii isolates were tested. Simultaneous detection of species and subdivision was achieved by designing a multiplex PCR test in which a 288-base pair (bp) band is produced by all R. solanacearum isolates, and an additional 409-bp band in Division I strains.
Resumo:
Testing ecological models for management is an increasingly important part of the maturation of ecology as an applied science. Consequently, we need to work at applying fair tests of models with adequate data. We demonstrate that a recent test of a discrete time, stochastic model was biased towards falsifying the predictions. If the model was a perfect description of reality, the test falsified the predictions 84% of the time. We introduce an alternative testing procedure for stochastic models, and show that it falsifies the predictions only 5% of the time when the model is a perfect description of reality. The example is used as a point of departure to discuss some of the philosophical aspects of model testing.
Resumo:
The current study was designed to confirm that female drivers sit closer to the steering wheel than do male drivers and to investigate whether this expected difference in sitting position is attributable to differences in the physical dimensions of men and women. Driver body dimensions and multiple measures of sitting distance from the steering wheel were collected from a sample of 150 men and 150 women. The results confirmed that on average, women sit closer to the steering wheel than men do and that this difference is accounted for by variations in body dimensions, especially height. This result suggests that driver height may provide a good surrogate for sitting distance from the steering wheel when investigating the role of driver position in real-world crash outcomes. The potential applications of this research include change to vehicle design that allows independent adjustment of the relative distance among the driver's seat, the steering wheel, and the floor pedals.
Resumo:
A straightforward method is proposed for computing the magnetic field produced by a circular coil that contains a large number of turns wound onto a solenoid of rectangular cross section. The coil is thus approximated by a circular ring containing a continuous constant current density, which is very close to the real situation when sire of rectangular cross section is used. All that is required is to evaluate two functions, which are defined as integrals of periodic quantities; this is done accurately and efficiently using trapezoidal-rule quadrature. The solution can be obtained so rapidly that this procedure is ideally suited for use in stochastic optimization, An example is given, in which this approach is combined with a simulated annealing routine to optimize shielded profile coils for NMR.
Resumo:
Background. The formation and measurement of self-concept were the foci of this research. Aims. The study aimed to investigate the influence of achievement on academic self-concept and to compare the Perception of Ability Scale for Students (PASS, Boersma & Chapman, 1992) with the Self-Description Questionnaire-1 (SDQ-1, Marsh, 1988). Sample. The participants were 479 grade 5 (mean age 126.6 months) coeducational Australian students, located in 18 schools. Method. An intra-class research design was used to investigate the influence of frame-of-reference on self-concept development. Results. As students' academic scores rose above their class mean their self-concepts increased and as students' academic scores fell below their class mean their self-concepts decreased. Students' difference from class mean predicted their self-concept scores. This finding was consistently shown across the reading, spelling, and mathematics domains using test and teaching rating data. A comparison between the PASS and the SDQ-1 demonstrated concurrent validity across self-concept domains. Conclusion. The findings support the notions that the social environment is a significant agent that influences self-concept, and that teacher ratings and standardised tests of achievement and the PASS and the SDQ-1 are valid measures for self-concept research.
Resumo:
Aims: To compare the performance of schizophrenia, mania and well control groups on tests sensitive to impaired executive ability, and to assess the within-group stability of these measures across the acute and subacute phases of psychoses. Method: Recently admitted patients with schizophrenia (n=36), mania (n=18) and a well control group (n=20) were assessed on two occasions separated by 4 weeks. Tests included: the Controlled Oral Word Association Test, the Stroop Test, the Wisconsin Card Sort Test, and the Trail Making Test. Results: The two patient groups were significantly impaired on the Stroop Test at both time points compared to the control group. Significant group differences were also found for the Trail Making Test at Time 1 and for the Wisconsin Card Sort Test at Time 2. When controlled for practice effect, significant improvements over time were found on the Stroop and Trail Making tests in the schizophrenia group and on WCST Categories Achieved in the mania group. Discussion: Compared to controls, the patient groups were impaired on measures related to executive ability. The pattern of improvement on test scores between the acute and subacute phases differed between patients with schizophrenia versus patients with mania. (C) 1997 Elsevier Science B.V.