28 resultados para Star complement
em University of Queensland eSpace - Australia
Resumo:
Human C5a is a plasma protein with potent chemoattractant and pro-inflammatory properties, and its overexpression correlates with severity of inflammatory diseases. C5a binds to its G protein-coupled receptor (C5aR) on polymorphonuclear leukocytes (PMNLs) through a high-affinity helical bundle and a low-affinity C terminus, the latter being solely responsible for receptor activation. Potent and selective C5a antagonists are predicted to be effective anti-inflammatory drugs, but no pharmacophore for small molecule antagonists has yet been developed, and it would significantly aid drug design. We have hypothesized that a turn conformation is important for activity of the C terminus of C5a and herein report small cyclic peptides that are stable turn mimics with potent antagonism at C5aR on human PMNLs. A comparison of solution structures for the C terminus of C5a, small acyclic peptide ligands, and cyclic antagonists supports the importance of a turn for receptor binding. Competition between a cyclic antagonist and either C5a or an acyclic agonist for C5aR on PMNLs supports a common or overlapping binding site on the C5aR. Structure-activity relationships for 60 cyclic analogs were evaluated by competitive radioligand binding with C5a (affinity) and myeloperoxidase release (antagonist potency) from human PMNLs, with 20 compounds having high antagonist potencies (IC50, 20 nM(-1) muM). Computer modeling comparisons reveal that potent antagonists share a common cyclic backbone shape, with affinity-determining side chains of defined volume projecting from the cyclic scaffold. These results define a new pharmacophore for C5a antagonist development and advance our understanding of ligand recognition and receptor activation of this G protein-coupled receptor.
Resumo:
Ischemia-reperfusion (I/R) injury is a common clinical event with the potential to seriously affect, and sometimes kill, the patient. Interruption of blood supply causes ischemia, which rapidly damages metabolically active tissues. Paradoxically, restoration of blood flow to the ischemic tissues initiates a cascade of pathology that leads to additional cell or tissue injury. I/R is a potent inducer of complement activation that results in the production of a number of inflammatory mediators. The use of specific inhibitors to block complement activation has been shown to prevent local tissue injury after I/R. Clinical and experimental studies in gut, kidney, limb, and liver have shown that I/R results in local activation of the complement system and leads to the production of the complement factors C3a, C5a, and the membrane attack complex. The novel inhibitors of complement products may find wide clinical application because there are no effective drug therapies currently available to treat I/R injuries.
Resumo:
We have previously shown that complement factor 5a(C5a) plays a role in the pathogenesis of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats by using the selective, orally active C5a antagonist AcF-[OP(D-Cha) WR]. This study tested the efficacy and potency of a new C5a antagonist, hydrocinnamate (HC)-[OP(D-Cha) WR], which has limited intestinal lumenal metabolism, in this model of colitis. Analogs of AcF-[OP(D-Cha) WR] were examined for their susceptibility to alimentary metabolism in the rat using intestinal mucosal washings. One metabolically stable analog, HC-[OP(D-Cha)WR], was then evaluated pharmacokinetically and investigated at a range of doses (0.03 - 10 mg/kg/ day p.o.) in the 8-day rat TNBS- colitis model, against the comparator drug AcF-[OP(D-Cha) WR]. Using various amino acid substitutions, it was determined that the AcF moiety of AcF-[OP(D-Cha) WR] was responsible for the metabolic instability of the compound in intestinal mucosal washings. The analog HC-[OP( D-Cha) WR], equiactive in vitro to AcF-[OP(D-Cha) WR], was resistant to intestinal metabolism, but it displayed similar oral bioavailability to AcF-[OP(D-Cha) WR]. However, in the rat TNBS- colitis model, HC-[OP(D-Cha) WR] was effective at reducing mortality, colon edema, colon macroscopic scores, and increasing food consumption and body weights, at 10- to 30- fold lower oral doses than AcF-[OP( D-Cha) WR]. These studies suggest that resistance to intestinal metabolism by HC-[OP(D-Cha) WR] may result in increased local concentrations of the drug in the colon, thus affording efficacy with markedly lower oral doses than AcF-[OP(D-Cha) WR] against TNBS-colitis. This large increase in potency and high efficacy of this compound makes it a potential candidate for clinical development against intestinal diseases such as inflammatory bowel disease.
Resumo:
The complement system is an innate immune defense mechanism that protects the host from infection and injury. Complement activation results in the formation of anaphylatoxins, including the biologically active protein C5a. This anaphylatoxin is a potent chemotactic agent for immune and inflammatory cells and induces cell activation. In situations of excessive or uncontrolled complement activation, the overproduction of C5a can cause deleterious effects to the host, and this process is implicated in the pathogenesis of numerous immunoinflammatory disease states, including rheumatoid arthritis, psoriasis, inflammatory bowel disease, ischemia-reperfusion injuries and others. The presence of C5a in a wide variety of condition's has prompted many groups to examine the potential of inhibiting this complement activation product, with the aim of controlling these diseases and reducing the pathologic process. However, to date there is no clinically available specific C5a inhibitor and development of this new drug class is still in a relatively early stage, although limited phase I and phase II human clinical trials have been undertaken in the last few years with selected agents. In this review, examination of the current evidence supporting a specific role of C5a in selected disease states and an overview of potential therapeutic C5a inhibitors will enable the critical evaluation of the potential for C5a as a therapeutic target.
Resumo:
This article reports thermoset blends of bisphenol A-type epoxy resin (ER) and two amphiphilic four-arm star-shaped diblock copolymers based on hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO). 4,4'-Methylenedianiline (MDA) was used as a curing agent. The first star-shaped diblock copolymer with 70 wt% ethylene oxide (EO), denoted as (PPO-PEO)(4), consists of four PPO-PEO diblock arms with PPO blocks attached on an ethylenediamine core; the second one with 40 wt% EO, denoted as (PEO-PPO)(4), contains four PEO-PPO diblock arms with PEO blocks attached on an ethylenediamine core. The phase behavior, crystallization, and nanoscale structures were investigated by differential scanning calorimetry, transmission electron microscopy, and small-angle X-ray scattering. It was found that the MDA-cured ER/(PPO-PEO)(4) blends are not macroscopically phase-separated over the entire blend composition range. There exist, however, two microphases in the ER/(PPO-PEO)(4) blends. The PPO blocks form a separated microphase, whereas the ER and the PEO blocks, which are miscible, form another microphase. The ER/(PPO-PEO)(4) blends show composition-dependent nanostructures on the order of 10-30 nm. The 80/20 ER/(PPO-PEO)(4) blend displays spherical PPO micelles uniformly dispersed in a continuous ER-rich matrix. The 60/40 ER/(PPO-PEO)(4) blend displays a combined morphology of worm-like micelles and spherical micelles with characteristic of a bicontinuous microphase structure. Macroscopic phase separation took place in the MDA-cured ER/(PEO-PPO)(4) blends. The MDA-cured ER/(PEO-PPO)(4) blends with (PEO-PPO)(4) content up to 50 wt% exhibit phase-separated structures on the order of 0.5-1 mu m. This can be considered to be due to the different EO content and block sequence of the (PEO-PPO)(4) copolymer. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Background: Designing novel proteins with site-directed recombination has enormous prospects. By locating effective recombination sites for swapping sequence parts, the probability that hybrid sequences have the desired properties is increased dramatically. The prohibitive requirements for applying current tools led us to investigate machine learning to assist in finding useful recombination sites from amino acid sequence alone. Results: We present STAR, Site Targeted Amino acid Recombination predictor, which produces a score indicating the structural disruption caused by recombination, for each position in an amino acid sequence. Example predictions contrasted with those of alternative tools, illustrate STAR'S utility to assist in determining useful recombination sites. Overall, the correlation coefficient between the output of the experimentally validated protein design algorithm SCHEMA and the prediction of STAR is very high (0.89). Conclusion: STAR allows the user to explore useful recombination sites in amino acid sequences with unknown structure and unknown evolutionary origin. The predictor service is available from http://pprowler.itee.uq.edu.au/star.
Resumo:
We report the first synthesis of amphiphilic four-arm star diblock copolymers consisting of styrene (STY) and acrylic acid (AA) made using reversible addition-fragmentation chain transfer (RAFT; Z group approach with no star-star coupling). The polymerization proceeded in an ideal living manner. The size of the poly(AA(132)-STYm)(4) stars in DMF were small and close to 7 nm, suggesting no star aggregation. Slow addition of water (pH = 6.8) to this mixture resulted in aggregates of 15 stars per micelle with core-shell morphology. Calculations showed that the polyAA blocks were slightly extended with a shell thickness of 15 nm. Treatment of these micelles with piperidine to cleave the block arms from the core resulted in little or no change on micelle size or morphology, but the polyAA shell thickness was close to 29 nm (33 nm is the maximum at full extension) suggesting a release of entropy when the arms are detached from the core molecule. In this work we showed through the use of star amphiphilic polymers that the micelle size, aggregation number, and morphology could be controlled.
Resumo:
We present the result of investigations into two theories to explain the star formation rate (SFR)-density relationship. For regions of high galaxy density, either there are fewer star-forming galaxies or galaxies capable of forming stars are present but some physical process is suppressing their star formation. We use H I Parkes All-Sky Survey's (HIPASS) HI detected galaxies and infrared and radio fluxes to investigate SFRs and efficiencies with respect to local surface density. For nearby (vel < 10 000 km s(-1)) H I galaxies, we find a strong correlation between H I mass and SFR. The number of H I galaxies decreases with increasing local surface density. For H I galaxies (1000 < vel < 6000 km s(-1)), there is no significant change in the SFR or the efficiency of star formation with respect to local surface density. We conclude that the SFR-density relation is due to a decrease in the number of H I star-forming galaxies in regions of high galaxy density and not to the suppression of star formation.
Resumo:
The ability to make rapid measurements on small samples using laser fluorination enhances the potential of oxygen isotopes in the investigation of early inorganic materials and technologies. delta O-18 and Sr-87/Sr-86 values are presented for glass from two primary production sites, four secondary production sites and a consumer site in the Near East, dating from Late Antiquity to the medieval period. delta O-18 is in general slightly less effective than Sr-87/Sr-86 in discriminating between sources, as the spread of measured values from a single source is somewhat broader relative to the available range. However, while Sr-87/Sr-86 is derived predominantly from either the lime-bearing fraction of the glass-making sand or the plant ash used as a source of alkali, delta O-18 derives mainly from the silica. Thus the two measurements can provide complementary information. A comparison of delta O-18 for late Roman - Islamic glasses made on the coast of Syria-Palestine with those of previously analysed glasses from Roman Europe suggests that the European glasses are relatively enriched in O-18. This appears to contradict the view that most Roman glass was made using Levantine sand and possible interpretations are discussed.
Resumo:
We derive observed H alpha and R-band luminosity densities of an H I-selected sample of nearby galaxies using the SINGG sample to be l'(H alpha) = (9.4 +/- 1.8) x 10(38) h(70) ergs s(-1) Mpc(-3) for H alpha and l'(R) = (4.4 +/- 9.7) x 10(37) h(70) ergs s(-1) angstrom(-1) Mpc(-3) in the R band. This R-band luminosity density is approximately 70% of that found by the Sloan Digital Sky Survey. This leads to a local star formation rate density of log ((rho)over dot(SFR) [M-circle dot yr(-1) Mpc(-3)]) = -1.80(-0.07)(+0.13)(random) +/- 0.03(systematic) + log (h(70)) after applying a mean internal extinction correction of 0.82 mag. The gas cycling time of this sample is found to be t(gas) = 7.5(-2.1)(+1.3) Gyr, and the volume-averaged equivalent width of the SINGG galaxies is EW(H alpha) = 28.8(-4.7)(+7.2) angstrom (21.2-3.5+4.2 angstrom without internal dust correction). As with similar surveys, these results imply that (rho)over dot(SFR)(z) decreases drastically from z similar to 1.5 to the present. A comparison of the dynamical masses of the SINGG galaxies evaluated at their optical limits with their stellar and H I masses shows significant evidence of downsizing: the most massive galaxies have a larger fraction of their mass locked up in stars compared with H I, while the opposite is true for less massive galaxies. We show that the application of the Kennicutt star formation law to a galaxy having the median orbital time at the optical limit of this sample results in a star formation rate decay with cosmic time similar to that given by the. (rho)over dot(SFR)(z) evolution. This implies that the (rho)over dot(SFR)(z) evolution is primarily due to the secular evolution of galaxies, rather than interactions or mergers. This is consistent with the morphologies predominantly seen in the SINGG sample.