244 resultados para Standing postural control

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The postural response to translation of the support surface may be influenced by the performance of an ongoing voluntary task. This study was designed to test this proposal by applying lateral perturbations while subjects handled a load in the frontal plane. Measurements were made of medio-lateral displacement of the centre of pressure, angular displacement of the trunk and thigh in the frontal plane and intra-abdominal pressure. Subjects were translated randomly to the left and right in a variety of conditions that involved standing either quietly or with a 5 kg load in their left hand, which they were required either to hold statically or to lift or lower. The results indicate that when the perturbation occurred towards the loaded left side the subjects were able to return their centre of pressure, trunk and thigh rapidly and accurately to the initial position. However, when the perturbation occurred towards the right (away from the load) this correction was delayed and associated with multiple changes in direction of movement, suggesting decreased efficiency of the postural response. This reduced efficiency can be explained by a conflict between the motor commands for the ongoing voluntary task and the postural response, and/or by the mechanical effect of the asymmetrical addition of load to the trunk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the extent to which movement of the lower limbs and pelvis may compensate for the disturbance to posture that results from respiratory movement of the thorax and abdomen. Motion of the neck, pelvis, leg and centre of pressure (COP) were recorded with high resolution in conjunction with electromyographic activity (EMG) of flexor and extensor muscles of the trunk and hip. Respiration was measured from ribcage motion. Subjects breathed quietly, and with increased volume due to hypercapnoca (as a result of breathing with increased dead-space) and a voluntary increase in respiration. Additional recordings were made during apnoea. The relationship between respiration and other parameters was measured from the correlation between data in the frequency domain (i.e. coherence) and from time-locked averages triggered from respiration. In quiet standing, small angular displacements (similar to0.5degrees) of the trunk and leg were identified in raw data. Correspondingly, there were peaks in the power spectra of the angular movements and EMG. While body movement and EMG were coherent with respiration (>0.5), the coherence between respiration and COP displacement was low (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At least 6% of primary school aged children present with DCD, where co-ordination is substantially below the normal range for the child’s age and intelligence. Motor skill difficulties negatively affect academic achievement, recreation and activities of daily living. Poor upper-limb co-ordination is a common difficulty for children with DCD. A possible cause of this problem is deviant muscle timing in proximal muscle groups, which results in poor postural and movement control. While studies have been published investigating postural control in response to external perturbations, detail about postural muscle activity during voluntary movement is limited even in children with normal motor development. No studies have investigated the relationship between muscle timing, resultant arm motion and upper-limb coordination deficits. Objectives: To investigate the relationship between functional difficulties with upper-limb motor skills and neuromuscular components of postural stability and coordination. Specifically, to investigate onset-timing of muscle activity, timing of arm movement, and resultant three-dimensional (3D) arm co-ordination during rapid, voluntary arm movement and to analyse differences arising due to the presence of DCD. This study is part of a larger research program investigating postural stability and control of upper limb movement in children. Design: A controlled, cross-sectional study of differences between children with and without DCD. Methods: This study included 50 children aged eight to 10 years (25 with DCD and 25 without DCD). Children participated in assessment of motor skills according to the Movement ABC Test and a laboratory study of rapid, voluntary arm movements. Parameters investigated included muscle activation timing of shoulder and trunk muscles (surface electromyography), arm movement timing (light sensor) and resultant 3D arm motion (Fastrak). Results: A MANOVA is being used to analyse between-group differences. Preliminary results indicate children with DCD demonstrate altered muscle timing during a rapid arm raise when compared with the control group of children. Conclusion: Differences in proximal muscle timing in children with DCD support the hypothesis that altered proximal muscle activity may contribute to poor proximal stability and consequently poor arm movement control. This has implications for clinical physiotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pain changes postural activation of the trunk muscles. The cause of these changes is not known but one possibility relates to the information processing requirements and the stressful nature of pain. This study investigated this possibility by evaluating electromyographic activity (EMG) of the deep and superficial trunk muscles associated with voluntary rapid arm movement. Data were collected from control trials, trials during low back pain (LBP) elicited by injection of hypertonic saline into the back muscles, trials during a non-painful attention-demanding task, and during the same task that was also stressful. Pain did not change the reaction time (RT) of the movement, had variable effects on RT of the superficial trunk muscles, but consistently increased RT of the deepest abdominal muscle. The effect of the attention-demanding task was opposite: increased RT of the movement and the superficial trunk muscles but no effect on RT of the deep trunk muscles. Thus, activation of the deep trunk muscles occurred earlier relative to the movement. When the attention-demanding task was made stressful, the RT of the movement and superficial trunk muscles was unchanged but the RT of the deep trunk muscles was increased. Thus, the temporal relationship between deep trunk muscle activation and arm movement was restored. This means that although postural activation of the deep trunk muscles is not affected when central nervous system resources are limited, it is delayed when the individual is also under stress. However, a non-painful attention-demanding task does not replicate the effect of pain on postural control of the trunk muscles even when the task is stressful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Voluntary limb movements are associated with involuntary and automatic postural adjustments of the trunk muscles. These postural adjustments occur prior to movement and prevent unwanted perturbation of the trunk. In low back pain, postural adjustments of the trunk muscles are altered such that the deep trunk muscles are consistently delayed and the superficial trunk muscles are sometimes augmented. This alteration of postural adjustments may reflect disruption of normal postural control imparted by reduced central nervous system resources available during pain, so-called pain interference, or reflect adoption of an alternate postural adjustment strategy. Methods: We aimed to clarify this by recording electromyographic activity of the upper (obliquus extemus) and lower (transversus abdominis/obliquus internus) abdominal muscles during voluntary arm movements that were coupled with painful cutaneous stimulation at the low back. If the effect of pain on postural adjustments is caused by pain interference, it should be greatest at the onset of the stimulus, should habituate with repeated exposure, and be absent immediately when the threat of pain is removed. Sixteen patients performed 30 forward movements of the right arm in response to a visual cue (control). Seventy trials were then conducted in which arm movement was coupled with pain (pain trials) and then a further 70 trials were conducted without the pain stimulus (no pain trials). Results: There was a gradual and increasing delay of transversus abdominis/obliquus internus electromyograph and augmentation of obliquus externus during the pain trials, both of which gradually returned to control values during the no pain trials. Conclusion: The results suggest that altered postural adjustments of the trunk muscles during pain are not caused by pain interference but are likely to reflect development and adoption of an alternate postural adjustment strategy, which may serve to limit the amplitude and velocity of trunk excursion caused by arm movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Design. Quiet stance on supporting bases with different lengths and with different visual inputs were tested in 24 study participants with chronic low back pain (LBP) and 24 matched control subjects. Objectives. To evaluate postural adjustment strategies and visual dependence associated with LBP. Summary of Background Data. Various studies have identified balance impairments in patients with chronic LBP, with many possible causes suggested. Recent evidence indicates that study participants with LBP have impaired trunk muscle control, which may compromise the control of trunk and hip movement during postural adjustments ( e. g., hip strategy). As balance on a short base emphasizes the utilization of the hip strategy for balance control, we hypothesized that patients with LBP might have difficulties standing on short bases. Methods. Subjects stood on either flat surface or short base with different visual inputs. A task was counted as successful if balance was maintained for 70 seconds during bilateral stance and 30 seconds during unilateral stance. The number of successful tasks, horizontal shear force, and center-of-pressure motion were evaluated. Results. The hip strategy was reduced with increased visual dependence in study participants with LBP. The failure rate was more than 4 times that of the controls in the bilateral standing task on short base with eyes closed. Analysis of center-of-pressure motion also showed that they have inability to initiate and control a hip strategy. Conclusions. The inability to control a hip strategy indicates a deficit of postural control and is hypothesized to result from altered muscle control and proprioceptive impairment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the degree to which the disturbance to posture from respiration is compensated for in healthy normals and whether this is different in people with recurrent low back pain (LBP), and to compare the changes when respiratory demand is increased. Angular displacement of the lumbar spine and hips, and motion of the centre of pressure (COP), were recorded with high resolution and respiratory phase was recorded from ribcage motion. With subjects standing in a relaxed posture, recordings were made during quiet breathing, while breathing with increased dead-space to induce hypercapnoea, and while subjects voluntarily increased their respiration to match ribcage expansion that was induced in the hypercapnoea condition. The relationship between respiration and the movement parameters was measured from the coherence between breathing and COP and angular motion at the frequency of respiration, and from averages triggered from the respiratory data. Small angular changes in the lumbopelvic and hip angles were evident at the frequency of respiration in both groups. However, in quiet standing, the LBP subjects had a greater displacement of their COP that was associated with respiration than the control subjects. The LBP group had a trend for less hip motion. There were no changes in the movement parameters when respiratory demand increased involuntarily via hypercapnoea, but when respiration increased voluntarily, the amplitude of motion and the displacement of the COP increased in both groups. The present data suggest that the postural compensation to respiration counteracts at least part of the disturbance to posture caused by respiration and that this compensation may be less effective in people with LBP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The abdominal muscles have an important role in control and movement of the lumbar spine and pelvis. Given there is new evidence of morphological and functional differences between distinct anatomical regions of the abdominal muscles, this study investigated whether there are regional differences in postural activity of these muscles and whether recruitment varies between different body positions. Eleven subjects with no history of low back pain that affected function or for which they sought treatment participated in the study. Electromyographic (EMG) activity of the upper, middle and lower regions of transversus abdominis (TrA), the middle and lower regions of obliquus internus abdominis (OI) and the middle region of obliquus externus abdominis (OE) was recorded using intramuscular electrodes. All subjects performed rapid, unilateral shoulder flexion in standing and six subjects also moved their upper limb in sitting. There were regional differences in the postural responses of TrA with limb movement. Notably, the onset of EMG of the upper region was later than that of the lower and middle regions. There were no differences in the EMG onsets of lower and middle TrA or OI. The postural responses of the abdominal muscles were also found to differ between body positions, with recruitment delayed in sitting compared to standing. This study showed that there is regional differentiation in TrA activity with challenges to postural control and that body position influences the postural responses of the abdominal muscles. These results may reflect variation in the contribution of abdominal muscle regions to stability of the trunk. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The temporal parameters of the response of the trunk muscles associated with movement of the lower limb were investigated in people with and without low back pain (LBP). The weight shift component of the task was completed voluntarily prior to a stimulus to move to allow investigation of the movement component of the response. In the control subjects the onset of electromyographic (EMG) activity of all trunk muscles preceded that of the muscle responsible for limb movement, thus contributing to the feed forward postural response. The EMG onset of transversus abdominis was delayed in the LBP subjects with movement in each direction, while the EMG onsets of rectus abdominis, erector spinae, and oblique abdominal muscles were delayed with specific movement directions. This result provides evidence of a change in the postural control of the trunk in people with LBP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In humans, when the stability of the trunk is challenged in a controlled manner by repetitive movement of a limb, activity of the diaphragm becomes tonic but is also modulated at the frequency of limb movement. In addition, the tonic activity is modulated by respiration. This study investigated the mechanical output of these components of diaphragm activity. Recordings were made of costal diaphragm, abdominal, and erector spinae muscle electromyographic activity; intra-abdominal, intrathoracic, and transdiaphragmatic pressures; and motion of the rib cage, abdomen, and arm. During limb movement the diaphragm and transversus abdominis were tonically active with added phasic modulation at the frequencies of both respiration and limb movement. Activity of the other trunk muscles was not modulated by respiration. Intra-abdominal pressure was increased during the period of limb movement in proportion to the reactive forces from the movement. These results show that coactivation of the diaphragm and abdominal muscles causes a sustained increase in intra-abdominal pressure, whereas inspiration and expiration are controlled by opposing activity of the diaphragm and abdominal muscles to vary the shape of the pressurized abdominal cavity.