21 resultados para Stains and staining (Microscopy)
em University of Queensland eSpace - Australia
Resumo:
Fluorescence and confocal laser scanning microscopy were explored to investigate the movement and localization of mineral oils in citrus. In a laboratory experiment, fluorescence microscopy observation indicated that when a 'narrow' distillation fraction of an nC23 horticultural mineral oil was applied to adaxial and opposing abaxial leaf surfaces of potted orange [Citrus x aurantium L. (Sapindales: Rutaceae)] trees, oil penetrated steadily into treated leaves and, subsequently, moved to untreated petioles of the leaves and adjacent untreated stems. In another experiment, confocal laser scanning microscopy was used to visualize the penetration into, and the subsequent cellular distribution of, an nC24 agricultural mineral oil in C. trifoliata L. seedlings. Oil droplets penetrated or diffused into plants via both stomata and the cuticle of leaves and stems, and then moved within intercellular spaces and into various cells including phloem and xylem. Oil accumulated in droplets in intercellular spaces and within cells near the cell membrane. Oil entered cells without visibly damaging membranes or causing cell death. In a field experiment with mature orange trees, droplets of an nC23 horticultural mineral oil were observed, by fluorescence microscopy, in phloem sieve elements in spring flush growth produced 4-5 months and 16-17 months after the trees were sprayed with oil. These results suggest that movement of mineral oil in plants is both apoplastic via intercellular spaces and symplastic via plasmodesmata. The putative pattern of the translocation of mineral oil in plants and its relevance to oil-induced chronic phytotoxicity are discussed.
Resumo:
Options for skin cancer treatment currently include surgery, radiotherapy, topical chemotherapy, cryosurgery, curettage, and electrodes-sication. Although effective, surgery is costly and unsuitable for certain patients. Radiotherapy can leave a poor cosmetic effect, and current chemotherapy is limited by low cure rates and extended treatment schedules. Here, we describe the preclinical activity of a novel topical chemotherapeutic agent for the treatment of skin cancer, 3-ingenyl angelate (PEP005), a hydrophobic diterpene ester isolated from the plant Euphorbia peplus. Three daily topical applications of 42 nmol (18 mug) of PEP005 cured a series of s.c. mouse tumors (B16 melanoma, LK2 UV-induced squamous cell carcinoma, and Lewis lung carcinoma; it = >14 tumors/group) and human tumors (DO4 melanoma, HeLa cervical carcinoma, and PC3 and DU145 prostate carcinoma; it = >4 tumors/group) previously established (5-10 mm(3)) on C57BL/6 or Fox1(nu) mice. The treatment produced a mild, short-term erythema and eschar formation but, ultimately, resulted in excellent skin cosmesis. The LD90 for PEP005 for a panel of tumor cell lines was 180-220 muM. Electron microscopy showed that treatment with PEP005 both ill vitro (230 tot) and ill vivo (42 nmol) rapidly caused swelling of mitochondria and cell death by primary necrosis. Cr-51 release, uptake of propidium iodide, and staining with the mitochondria dye JC1, revealed that PEP005 (230 muM) treatment of tumor cells ill vitro resulted in a rapid plasma membrane perturbation and loss of mitochondrial membrane potential. PEP005 thus emerges as a new topical anti-skin cancer agent that has a novel mode of action involving plasma membrane and mitochondrial disruption and primary necrosis, ultimately resulting in an excellent cosmetic outcome.
Resumo:
Renin and angiotensinogen have been previously found in the rat pancreas, and angiotensin receptors have been located in the apical domain of duct cells. To evaluate the possibility that angiotensin II could be generated within the duct system, we decided to determine whether angiotensinogen is present in rat pancreatic juice and the angiotensinogen-immunoreactive pancreatic cell types that could be responsible for its production. Angiotensinogen was detected in significant amounts by Western blotting in pancreatic juice collected from several individual rats. Different isoforms between plasma and pancreatic juice angiotensinogens were demonstrated by isoelectric focusing. Immunocytochemical experiments revealed angiotensinogen-immunoreactive cells at the periphery of the islets of Langerhans, and confocal microscopy demonstrated that most angiotensinogen-immunoreactive cells were glucagon-secreting cells. Secretion of angiotensinogen did not follow the regulated secretory pathway since it was absent from the glucagon-containing granules. This was confirmed by electron microscopy immunocytochemistry. Duct and acinar cells did not express angiotensinogen at an immunocytochemical detectable level. The present findings indicated an exocrine secretion of angiotensinogen by glucagon-secreting cells and suggest that one of the final targets of the local pancreatic renin-angiotensin system may be the duct epithelium.
Resumo:
Epstein-Barr virus (EBV)-infected B cell lymphomas are resistant to apoptosis during cancer development and treatment with therapies. The molecular controls that determine why EBV infection causes apoptosis resistance need further definition. EBV-positive and EBV-negative BJA-B B cell lymphoma cell lines were used to compare the expression of selected apoptosis-regulating Bcl-2 and caspase proteins in EBV-related apoptosis resistance, after 8 hr or 18-24 hr etoposide treatment (80 muM). Apoptosis was quantified using morphology and verified with Hoechst 33258 nuclear stain and electron microscopy. Fluorescence activated cell sorting (FACS) was used to analyse effects on cell cycle of the EBV infection as well as etoposide treatment. Anti-apoptotic Bcl-2 and Bcl-XL, pro-apoptotic Bax, caspase-3 and caspase-9 expression and activation were analysed using Western immunoblots and densitometry. EBV-positive cultures had significantly lower levels of apoptosis in untreated and etoposide-treated cultures in comparison with EBV-negative cultures (p < 0.05). FACS analysis indicated a strong G2/M block in both cell sublines after etoposide treatment. Endogenous Bcl-2 was minimal in the EBV-negative cells in comparison with strong expression in EBV-positive cells. These levels did not alter with etoposide treatment. Bcl-XL was expressed endogenously in both cell lines and had reduced expression in EBV-negative cells after etoposide treatment. Bax showed no etoposide-induced alterations in expression. Pro-caspase-9 and -3 were seen in both EBV-positive and -negative cells. Etoposide induced cleavage of caspase-9 in both cell lines, with the EBV-positive cells having proportionally less cleavage product, in agreement with their lower levels of apoptosis. Caspase-3 cleavage occurred in the EBV-negative etoposide-treated cells but not in the EBV-positive cells. The results indicate that apoptosis resistance in EBV-infected B cell lymphomas is promoted by an inactive caspase-3 pathway and elevated expression of Bcl-2 that is not altered by etoposide drug treatment.
Resumo:
Objective. To compare the efficacy of two forms of eye care (hypromellose and Lacri-Lube combination vs polyethylene/Cling wrap covers) for intensive care patients. Design. Randomised-controlled trial. Setting. University affiliated, tertiary referral hospital. Patients and participants. One hundred ten patients with a reduced or absent blink reflex were followed through until they regained consciousness, were discharged from the facility during study enrolment, died or developed a positive corneal ulcer or eye infection. Interventions. All patients received standard eye cleansing every 2 h. In addition to this, group one (n=60) received a treatment combining hypromellose drops and Lacri-Lube (HL) to each eye every 2 h. Group two (n=50) had polyethylene covers only placed over the eye to create a moisture chamber. Measurements and results. Corneal ulceration was determined using corneal fluorescein stains and mobile slit lamp evaluation, performed daily. No patients had corneal ulceration in the polyethylene cover group, but 4 patients had corneal ulceration in the HL group. Conclusions. Polyethylene covers are as effective as HL in reducing the incidence of corneal damage in intensive care patients.
Resumo:
Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cav(DGV)) to study LB formation and to examine its effect on LB function. We now show that the cav(DGV) mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.
Resumo:
The aim was to investigate the roles of proline residues in extracellular loop 2 (P172, P183, P188 and P209) and transmembrane domains 2, 5, 11 and 12 (P108, P270, P526, P551, P552 and P570) in determining noradrenaline transporter (NET) expression and function. Mutants of human NET with these residues mutated to alanine were pharmacologically characterized. Mutation of P108, P270 and P526 disrupted cell surface expression, from [H-3]nisoxetine binding and confocal microscopy data. Mutations of P526, P551 and P570 reduced transporter turnover (V-max of [H-3]noradrenaline uptake/B-max of [H-3]nisoxetine binding) by 1.5-1.7-fold compared with wild-type NET, so these residues might be involved in conformational changes associated with substrate translocation. Conversely, mutations of P172, P183, P188 and P209 increased V-max/B-max by 2-3-fold compared with wild-type, indicating that the presence of these proline residues limits turnover of the NET. The mutations had few effects on apparent affinities of substrates or affinities of inhibitors, except decreases in inhibitor affinities after mutations of the P270 and P570 residues, and increases after mutation of the P526 residue. Hence, proline residues in extracellular loop 2 and in transmembrane domains have a range of roles in determining expression and function of the NET.
Resumo:
The Eph receptor tyrosine kinases and their membrane-bound ephrin ligands form a unique cell-cell contact-mediated system for controlling cell localization and organization. Their high expression in a wide variety of human tumors indicates a role in tumor progression, and relatively low Eph and ephrin levels in normal tissues make these proteins potential targets for anticancer therapies. The monoclonal antibody IIIA4, previously used to isolate EphA3, binds with subnanomolar affinity to a conformation-specific epitope within the ephrin-binding domain that is closely adjacent to the low-affinity ephrin-A5 heterotetramerization site. We show that similar to ephrin-A5, preclustered IIIA4 effectively triggers EphA3 activation, contraction of the cytoskeleton, and cell rounding. BIAcore analysis, immunoblot, and confocal microscopy of wild-type and mutant EphA3 with compromised ephrin-A5 or IIIA4-binding capacities indicate that IIIA4 binding triggers an EphA3 conformation which is permissive for the assembly of EphA3/ephrin-A5-type signaling clusters. Furthermore, unclustered IIIA4 and ephrin-A5 Fc applied in combination initiate greatly enhanced EphA3 signaling. Radiometal conjugates of ephrin-A5 and IIIA4 retain their affinity, and in mouse xenografts localize to, and are internalized rapidly into EphA3-positive, human tumors. These findings show the biological importance of EphA3/ ephrin-A5 interactions and that ephrin-A5 and IIIA4 have great potential as tumor targeting reagents.
Resumo:
Rab GTPases are crucial regulators of membrane traffic. Here we have examined a possible association of Rab proteins with lipid droplets (LDs), neutral lipid-containing organelles surrounded by a phospholipid monolayer, also known as lipid bodies, which have been traditionally considered relatively inert storage organelles. Although we found close apposition between LDs and endosomal compartments labeled by expressed Rab5, Rab7, or Rab11 constructs, there was no detectable labeling of the LD surface itself by these Rab proteins. In contrast, GFP-Rab18 localized to LDs and immunoelectron microscopy showed direct association with the monolayer surface. Green fluorescent protein (GFP)-Rab18-labeled LDs underwent oscillatory movements in a localized area as well as sporadic, rapid, saltatory movements both in the periphery of the cell and toward the perinuclear region. In both adipocytes and non-adipocyte cell lines Rab18 localized to a subset of LDs. To gain insights into this specific localization, Rab18 was co-expressed with Cav3(DGV), a truncation mutant of caveolin-3 shown to inhibit the catabolism and motility of lipid droplets. GFP-Rab18 and mRFP-Cav3(DGV) labeled mutually exclusive subpopulations of LDs. Moreover, in 3T3-L1 adipocytes, stimulation of lipolysis increased the localization of Rab18 to LDs, an effect reversed by beta-adrenergic antagonists. These results show that a Rab protein localizes directly to the monolayer surface of LDs. In addition, association with the LD surface was increased following stimulation of lipolysis and inhibited by a caveolin mutant suggesting that recruitment of Rab18 is regulated by the metabolic state of individual LDs.
Resumo:
Correspondence between the T-cell epitope responses of vaccine immunogens and those of pathogen antigens is critical to vaccine efficacy. In the present study, we analyzed the spectrum of immune responses of mice to three different forms of the SARS coronavirus nucleocapsid (N): (1) exogenous recombinant protein (N-GST) with Freund's adjuvant; (2) DNA encoding unmodified N as an endogenous cytoplasmic protein (pN); and (3) DNA encoding N as a LAMP-I chimera targeted to the lysosomal MHC II compartment (p-LAMP-N). Lysosomal trafficking of the LAMP/N chimera in transfected cells was documented by both confocal and immunoelectron microscopy. The responses of the immunized mice differed markedly. The strongest T-cell IFN-gamma and CTL responses were to the LAMP-N chimera followed by the pN immunogen. In contrast, N-GST elicited strong T cell IL-4 but minimal IFN-gamma responses and a much greater antibody response. Despite these differences, however, the immunodominant T-cell ELISpot responses to each of the three immunogens were elicited by the same N peptides, with the greatest responses being generated by a cluster of five overlapping peptides, N76-114, each of which contained nonameric H2(d) binding domains with high binding scores for both class I and, except for N76-93, class II alleles. These results demonstrate that processing and presentation of N, whether exogenously or endogenously derived, resulted in common immunodominant epitopes, supporting the usefulness of modified antigen delivery and trafficking forms and, in particular, LAMP chimeras as vaccine candidates. Nevertheless, the profiles of T-cell responses were distinctly different. The pronounced Th-2 and humoral response to N protein plus adjuvant are in contrast to the balanced IFN-gamma and IL-4 responses and strong memory CTL responses to the LAMP-N chimera. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Hepcidin is a liver-expressed antimicrobial and iron regulatory peptide. A number of studies have indicated that hepcidin is important for the correct regulation of body iron homeostasis. The aims of this study were to analyse the expression, trafficking and regulation of human hepcidin in an in vitro cell culture system. Human hepcidin was transfected into human embryonic kidney cells. Immunofluorescence and confocal microscopy analysis revealed that recombinant hepcidin localised to the Golgi complex. Recombinant hepcidin is secreted from the cell within 1 h of its synthesis. Recombinant hepcidin was purified from the cell culture medium using ion-exchange and metal-affinity chromatography and was active in antimicrobial assays. Amino-terminal sequence analysis of the secreted peptide revealed that it was the mature 25 amino acid form of hepcidin. Our results show that recombinant myc-His tagged human hepcidin was expressed, processed and secreted correctly and biologically active in antimicrobial assays. (C) 2005 Elsevier SAS. All rights reserved.
Resumo:
The Australian lungfish Neoceratodus forsteri (Dipnoi) is an ancient fish that has a unique phylogenetic relationship among the basal Sarcopterygii. Here we examine the ultrastructure, histochemistry, and distribution of the retinal photoreceptors using a combination of light and electron microscopy in order to determine the characteristics of the photoreceptor layer in this living fossil. Similar proportions of rods (53%) and cones (47%) reveal that N. forsteri optimizes both scotopic and photopic sensitivity according to its visual demands. Scotopic sensitivity is optimized by a tapetum lucidum and extremely large rods (18.62 +/- 2.68 mu m ellipsoid diameter). Photopic sensitivity is optimized with a theoretical spatial resolving power of 3.28 +/- 0.66 cycles degree(-1), which is based on the spacing of at least three different cone types: a red cone containing a red oil droplet, a yellow cone containing a yellow ellipsoidal pigment, and a colorless cone containing multiple clear oil droplets. Topographic analysis reveals a heterogeneous distribution of all photoreceptor types, with peak cone densities predominantly found in temporal retina (6,020 rods MM 2, 4,670 red cones mm(-2), 900 yellow cones mm(-2), and 320 colorless cones mm(-2)), but ontogenetic changes in distribution are revealed. Spatial resolving power and the diameter of all photoreceptor types (except yellow cones) increases linearly with growth. The presence of at least three morphological types of cones provides the potential for color vision, which could play a role in the clearer waters of its freshwater environment.
Resumo:
Three high chromium white cast irons were examined in the as-cast state to determine the effect of the carbon content on the fracture toughness. The plane strain fracture toughness K-Ic and the fracture strength were measured for each alloy. X-ray mapping was used to identify the phases on the fracture surfaces. Scanning electron fractography and optical microscopy were used to determine the volume fraction of each phase on the fracture surfaces. It was found that most fracture occurred in the eutectic carbides, but that for the alloys with a reduced volume fraction of eutectic carbides, a small amount of crack propagation occurred in the austenitic dendrites. This change in crack path correlated with an increase in fracture toughness. The Ritchie-Knott-Rice model of brittle fracture was applied. It was found to sensibly predict the critical length for fracture for each alloy. Deep etching was employed to examine the distribution of eutectic carbides. It was found that the eutectic carbides formed a continuous network in each case. (C) 2004 Kluwer Academic Publishers.
Resumo:
The effects of different concentrations of individual additions of rare earth metals (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) on eutectic modification in Al-10mass%Si has been studied by thermal analysis and optical microscopy. According to the twin-plane re-entrant edge (TPRE) and impurity induced twinning mechanism, rare earth metals with atomic radii of about 1.65 times larger than that of silicon, are possible candidates for eutectic modification. All of the rare earth elements caused a depression of the eutectic growth temperature, but only Eu modified the eutectic silicon to a fibrous morphology. At best, the remaining elements resulted in only a small degree of refinement of the plate-like silicon. The samples were also quenched during the eutectic arrest to examine the eutectic solidification modes. Many of the rare-earth additions significantly altered the eutectic solidification mode from that of the unmodified alloy. It is concluded that the impurity induced twinning model of modification, based on atomic radius alone, is inadequate and other mechanisms are essential for the modification process. Furthermore, modification and the eutectic nucleation and growth modes are controlled independently of each other.