8 resultados para Spring, Gardiner, 1785-1873.
em University of Queensland eSpace - Australia
Resumo:
Serious infestations of Helicoverpa punctigera are experienced yearly in the eastern cropping regions of Australia. Regression analysis was used to determine whether the size of the first generation in spring (G(1)), which is comprised mostly of immigrants from inland Australia, was related to monthly rainfall in inland winter breeding areas. Data from two long series of light-trap catches at Narrabri in New South Wales (NSW) and Turretfield in South Australia (SA) were used in the analyses. The size of G1 at Narrabri in each year was significantly regressed on the amount of rainfall in western Queensland and NSW in May and June. The size of G1 at Turretfield each year was significantly regressed on the amount of rain in May, June and July in western Queensland and NSW and also in the desert of central Western Australia. Low r(2) values of the regressions suggest that rainfall data for more sites, as well as biological and other physical factors, such as temperature, evaporation, and prevailing wind systems, may need to be included to improve forecasts of the potential magnitude of the infestations in coastal cropping regions.
Resumo:
Tidal water table fluctuations in a coastal aquifer are driven by tides on a moving boundary that varies with the beach slope. One-dimensional models based on the Boussinesq equation are often used to analyse tidal signals in coastal aquifers. The moving boundary condition hinders analytical solutions to even the linearised Boussinesq equation. This paper presents a new perturbation approach to the problem that maintains the simplicity of the linearised one-dimensional Boussinesq model. Our method involves transforming the Boussinesq equation to an ADE (advection-diffusion equation) with an oscillating velocity. The perturbation method is applied to the propagation of spring-neap tides (a bichromatic tidal system with the fundamental frequencies wt and wt) in the aquifer. The results demonstrate analytically, for the first time, that the moving boundary induces interactions between the two primary tidal oscillations, generating a slowly damped water table fluctuation of frequency omega(1) - omega(2), i.e., the spring-neap tidal water table fluctuation. The analytical predictions are found to be consistent with recently published field observations. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Predictions of water table fluctuations in coastal aquifers are needed for numerous coastal and water resources engineering problems. Most previous investigations have been based on the Boussinesq equation for the case of a vertical beach. In this note an analytical solution based on shallow water expansion for the spring- neap tide- induced water table fluctuations in a coastal aquifer is presented. Unlike most previous investigations, multitidal signals are considered with a sloping coastal aquifer. The new solution is verified by comparing with field observations from Ardeer, Scotland. On the basis of the analytical approximation the influences of higher- order components on water table elevation are examined first. Then, a parametric study has been performed to investigate the effects of the amplitude ratio (lambda), frequency ratio (omega), and phases (delta(1) and delta(2)) on the tide- induced water table fluctuations in a sloping sandy beach.
Resumo:
Systems approaches can help to evaluate and improve the agronomic and economic viability of nitrogen application in the frequently water-limited environments. This requires a sound understanding of crop physiological processes and well tested simulation models. Thus, this experiment on spring wheat aimed to better quantify water x nitrogen effects on wheat by deriving some key crop physiological parameters that have proven useful in simulating crop growth. For spring wheat grown in Northern Australia under four levels of nitrogen (0 to 360 kg N ha(-1)) and either entirely on stored soil moisture or under full irrigation, kernel yields ranged from 343 to 719 g m(-2). Yield increases were strongly associated with increases in kernel number (9150-19950 kernels m(-2)), indicating the sensitivity of this parameter to water and N availability. Total water extraction under a rain shelter was 240 mm with a maximum extraction depth of 1.5 m. A substantial amount of mineral nitrogen available deep in the profile (below 0.9 m) was taken up by the crop. This was the source of nitrogen uptake observed after anthesis. Under dry conditions this late uptake accounted for approximately 50% of total nitrogen uptake and resulted in high (>2%) kernel nitrogen percentages even when no nitrogen was applied,Anthesis LAI values under sub-optimal water supply were reduced by 63% and under sub-optimal nitrogen supply by 50%. Radiation use efficiency (RUE) based on total incident short-wave radiation was 1.34 g MJ(-1) and did not differ among treatments. The conservative nature of RUE was the result of the crop reducing leaf area rather than leaf nitrogen content (which would have affected photosynthetic activity) under these moderate levels of nitrogen limitation. The transpiration efficiency coefficient was also conservative and averaged 4.7 Pa in the dry treatments. Kernel nitrogen percentage varied from 2.08 to 2.42%. The study provides a data set and a basis to consider ways to improve simulation capabilities of water and nitrogen effects on spring wheat. (C) 1997 Elsevier Science B.V.
Resumo:
We use a stochastic patch occupancy model of invertebrates in the Mound Springs ecosystem of South Australia to assess the ability of incidence function models to detect environmental impacts on metapopulations. We assume that the probability of colonisation decreases with increasing isolation and the probability of extinction is constant across spring vents. We run the models to quasi-equilibrium, and then impose an impact by increasing the local extinction probability. We sample the output at various times pre- and postimpact, and examine the probability of detecting a significant change in population parameters. The incidence function model approach turns out to have little power to detect environmental impacts on metapopulations with small numbers of patches. (C) 2001 Elsevier Science Ltd. All rights reserved.