3 resultados para Splines monotones
em University of Queensland eSpace - Australia
Resumo:
The sexual ornamentation used by male guppies to attract females comprises many components, each of which varies considerably among males. Although natural and sexual selection have been shown to contribute to divergence among populations in male sexual ornaments, the role of sexual selection in maintaining polymorphism within populations is less clear. We used both parametric quadratic regression and nonparametric projection pursuit regression techniques to reveal the major axes of non-linear sexual selection on male ornaments. We visualized the fitness surfaces defined by these axes using thin-plate splines to allow a direct comparison of the two methodologies. Identification of the major axes of selection and their visualization was critical in determining the form and strength of nonlinear selection. Both types of analysis revealed fitness surfaces comprising three peaks, suggesting that there is more than one way to make an attractive guppy. Disruptive selection may be an important process underlying the presence of multiple sexual ornaments and may contribute to the maintenance of the high levels of polymorphism in male sexual ornaments found in guppy populations.
Resumo:
This paper proposes a template for modelling complex datasets that integrates traditional statistical modelling approaches with more recent advances in statistics and modelling through an exploratory framework. Our approach builds on the well-known and long standing traditional idea of 'good practice in statistics' by establishing a comprehensive framework for modelling that focuses on exploration, prediction, interpretation and reliability assessment, a relatively new idea that allows individual assessment of predictions. The integrated framework we present comprises two stages. The first involves the use of exploratory methods to help visually understand the data and identify a parsimonious set of explanatory variables. The second encompasses a two step modelling process, where the use of non-parametric methods such as decision trees and generalized additive models are promoted to identify important variables and their modelling relationship with the response before a final predictive model is considered. We focus on fitting the predictive model using parametric, non-parametric and Bayesian approaches. This paper is motivated by a medical problem where interest focuses on developing a risk stratification system for morbidity of 1,710 cardiac patients given a suite of demographic, clinical and preoperative variables. Although the methods we use are applied specifically to this case study, these methods can be applied across any field, irrespective of the type of response.
Resumo:
The effect of the tumour-forming disease, fibropapillomatosis, on the somatic growth dynamics of green turtles resident in the Pala'au foraging grounds (Moloka'i, Hawai'i) was evaluated using a Bayesian generalised additive mixed modelling approach. This regression model enabled us to account for fixed effects (fibropapilloma tumour severity), nonlinear covariate functional form (carapace size, sampling year) as well as random effects due to individual heterogeneity and correlation between repeated growth measurements on some turtles. Somatic growth rates were found to be nonlinear functions of carapace size and sampling year but were not a function of low-to-moderate tumour severity. On the other hand, growth rates were significantly lower for turtles with advanced fibropapillomatosis, which suggests a limited or threshold-specific disease effect. However, tumour severity was an increasing function of carapace size-larger turtles tended to have higher tumour severity scores, presumably due to longer exposure of larger (older) turtles to the factors that cause the disease. Hence turtles with advanced fibropapillomatosis tended to be the larger turtles, which confounds size and tumour severity in this study. But somatic growth rates for the Pala'au population have also declined since the mid-1980s (sampling year effect) while disease prevalence and severity increased from the mid-1980s before levelling off by the mid-1990s. It is unlikely that this decline was related to the increasing tumour severity because growth rates have also declined over the last 10-20 years for other green turtle populations resident in Hawaiian waters that have low or no disease prevalence. The declining somatic growth rate trends evident in the Hawaiian stock are more likely a density-dependent effect caused by a dramatic increase in abundance by this once-seriously-depleted stock since the mid-1980s. So despite increasing fibropapillomatosis risk over the last 20 years, only a limited effect on somatic growth dynamics was apparent and the Hawaiian green turtle stock continues to increase in abundance.