21 resultados para Spinor condensate
em University of Queensland eSpace - Australia
Resumo:
0We study the exact solution for a two-mode model describing coherent coupling between atomic and molecular Bose-Einstein condensates (BEC), in the context of the Bethe ansatz. By combining an asymptotic and numerical analysis, we identify the scaling behaviour of the model and determine the zero temperature expectation value for the coherence and average atomic occupation. The threshold coupling for production of the molecular BEC is identified as the point at which the energy gap is minimum. Our numerical results indicate a parity effect for the energy gap between ground and first excited state depending on whether the total atomic number is odd or even. The numerical calculations for the quantum dynamics reveals a smooth transition from the atomic to the molecular BEC.
Resumo:
Dynamical tunneling is a quantum phenomenon where a classically forbidden process occurs that is prohibited not by energy but by another constant of motion. The phenomenon of dynamical tunneling has been recently observed in a sodium Bose-Einstein condensate. We present a detailed analysis of these experiments using numerical solutions of the three-dimensional Gross-Pitaevskii equation and the corresponding Floquet theory. We explore the parameter dependency of the tunneling oscillations and we move the quantum system towards the classical limit in the experimentally accessible regime.
Resumo:
Recent experimental measurements of atomic intensity correlations through atom shot noise suggest that atomic quadrature phase correlations may soon be measured with a similar precision. We propose a test of local realism with mesoscopic numbers of massive particles based on such measurements. Using dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic atoms, we demonstrate that strongly entangled atomic beams may be produced which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures in direct analogy to the position and momentum correlations originally considered by EPR.
Resumo:
We propose a scheme for parametric amplification and phase conjugation of an atomic Bose-Einstein condensate (BEC) via stimulated dissociation of a BEC of molecular dimers consisting of bosonic atoms. This can potentially be realized via coherent Raman transitions or using a magnetic Feshbach resonance. We show that the interaction of a small incoming atomic BEC with a (stationary) molecular BEC can produce two counterpropagating atomic beams - an amplified atomic BEC and its phase-conjugate or "time-reversed" replica. The two beams can possess strong quantum correlation in the relative particle number, with squeezed number-difference fluctuations.
Resumo:
We investigate the entanglement characteristics of two general bimodal Bose-Einstein condensates-a pair of tunnel-coupled Bose-Einstein condensates and the atom-molecule Bose-Einstein condensate. We argue that the entanglement is only physically meaningful if the system is viewed as a bipartite system, where the subsystems are the two modes. The indistinguishibility of the particles in the condensate means that the atomic constituents are physically inaccessible and, thus, the degree of entanglement between individual particles, unlike the entanglement between the modes, is not experimentally relevant so long as the particles remain in the condensed state. We calculate the entanglement between the two modes for the exact ground state of the two bimodal condensates and consider the dynamics of the entanglement in the tunnel-coupled case.
Resumo:
We provide a derivation of a more accurate version of the stochastic Gross-Pitaevskii equation, as introduced by Gardiner et al (2002 J. Phys. B: At. Mol. Opt. Phys. 35 1555). This derivation does not rely on the concept of local energy and momentum conservation and is based on a quasiclassical Wigner function representation of a 'high temperature' master equation for a Bose gas, which includes only modes below an energy cut-off ER that are sufficiently highly occupied (the condensate band). The modes above this cutoff (the non-condensate band) are treated as being essentially thermalized. The interaction between these two bands, known as growth and scattering processes, provides noise and damping terms in the equation of motion for the condensate band, which we call the stochastic Gross-Pitaevskii equation. This approach is distinguished by the control of the approximations made in its derivation and by the feasibility of its numerical implementation.
Resumo:
Cold atoms in optical potentials provide an ideal test bed to explore quantum nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a dilute Bose-Einstein condensate and subjected to a far detuned optical standing wave that is modulated. They exhibit a wide range of dynamics, some of which can be explained by classical theory while other aspects show the underlying quantum nature of the system. The atoms have a mixed phase space containing regions of regular motion which appear as distinct peaks in the atomic momentum distribution embedded in a sea of chaos. The action of the atoms is of the order of Planck's constant, making quantum effects significant. This tutorial presents a detailed description of experiments measuring the evolution of atoms in time-dependent optical potentials. Experimental methods are developed providing means for the observation and selective loading of regions of regular motion. The dependence of the atomic dynamics on the system parameters is explored and distinct changes in the atomic momentum distribution are observed which are explained by the applicable quantum and classical theory. The observation of a bifurcation sequence is reported and explained using classical perturbation theory. Experimental methods for the accurate control of the momentum of an ensemble of atoms are developed. They use phase space resonances and chaotic transients providing novel ensemble atomic beamsplitters. The divergence between quantum and classical nonlinear dynamics is manifest in the experimental observation of dynamical tunnelling. It involves no potential barrier. However a constant of motion other than energy still forbids classically this quantum allowed motion. Atoms coherently tunnel back and forth between their initial state of oscillatory motion and the state 180 out of phase with the initial state.
Resumo:
We analyze molecular bound states of atomic quantum gases near a Feshbach resonance. A simple, renormalizable field theoretic model is shown to have exact solutions in the two-body sector, whose binding energy agrees well with observed experimental results in both Bosonic and Fermionic cases. These solutions, which interpolate between BEC and BCS theories, also provide a more general variational ansatz for resonant superfluidity and related problems.
Resumo:
Following the original analysis Of Zhang and Hu for the 4-dimensional generalization of Quantum Hall effect, there has been much work from different viewpoints on the higher dimensional condensed matter systems. In this paper, we discuss three kinds of topological excitations in the SO(4) gauge field of condensed matter systems in 4-dimension-the instantons and anti-instantons, the 't Hooft-Polyakov monopoles, and the 2-membranes. Using the phi-mapping topological theory, it is revealed that there are 4-, 3-, and 2-dimensional topological currents inhering in the SO (4) gauge field, and the above three kinds of excitations can be directly and explicitly derived from these three kinds of currents, respectively. Moreover, it is shown that the topological charges of these excitations are characterized by the Hopf indices and Brouwer degrees of phi-mapping. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
We extend the projected Gross-Pitaevskii equation formalism of Davis [Phys. Rev. Lett. 87, 160402 (2001)] to the experimentally relevant case of thermal Bose gases in harmonic potentials and outline a robust and accurate numerical scheme that can efficiently simulate this system. We apply this method to investigate the equilibrium properties of the harmonically trapped three-dimensional projected Gross-Pitaevskii equation at finite temperature and consider the dependence of condensate fraction, position, and momentum distributions and density fluctuations on temperature. We apply the scheme to simulate an evaporative cooling process in which the preferential removal of high-energy particles leads to the growth of a Bose-Einstein condensate. We show that a condensate fraction can be inferred during the dynamics even in this nonequilibrium situation.
Resumo:
We summarize recent theoretical results for the signatures of strongly correlated ultra-cold fermions in optical lattices. In particular, we focus on collective mode calculations, where a sharp decrease in collective mode frequency is predicted at the onset of the Mott metal-insulator transition; and correlation functions at finite temperature, where we employ a new exact technique that applies the stochastic gauge technique with a Gaussian operator basis.
Resumo:
We present Ehrenfest relations for the high temperature stochastic Gross-Pitaevskii equation description of a trapped Bose gas, including the effect of growth noise and the energy cutoff. A condition for neglecting the cutoff terms in the Ehrenfest relations is found which is more stringent than the usual validity condition of the truncated Wigner or classical field method-that all modes are highly occupied. The condition requires a small overlap of the nonlinear interaction term with the lowest energy single particle state of the noncondensate band, and gives a means to constrain dynamical artefacts arising from the energy cutoff in numerical simulations. We apply the formalism to two simple test problems: (i) simulation of the Kohn mode oscillation for a trapped Bose gas at zero temperature, and (ii) computing the equilibrium properties of a finite temperature Bose gas within the classical field method. The examples indicate ways to control the effects of the cutoff, and that there is an optimal choice of plane wave basis for a given cutoff energy. This basis gives the best reproduction of the single particle spectrum, the condensate fraction and the position and momentum densities.
Resumo:
A self-consistent theory is derived to describe the BCS-Bose-Einstein-condensate crossover for a strongly interacting Fermi gas with a Feshbach resonance. In the theory the fluctuation of the dressed molecules, consisting of both preformed Cooper pairs and bare Feshbach molecules, has been included within a self-consistent T-matrix approximation, beyond the Nozieres and Schmitt-Rink strategy considered by Ohashi and Griffin. The resulting self-consistent equations are solved numerically to investigate the normal-state properties of the crossover at various resonance widths. It is found that the superfluid transition temperature T-c increases monotonically at all widths as the effective interaction between atoms becomes more attractive. Furthermore, a residue factor Z(m) of the molecule's Green function and a complex effective mass have been determined to characterize the fraction and lifetime of Feshbach molecules at T-c. Our many-body calculations of Z(m) agree qualitatively well with recent measurments of the gas of Li-6 atoms near the broad resonance at 834 G. The crossover from narrow to broad resonances has also been studied.
Resumo:
We experimentally investigate the outcoupling of atoms from Bose-Einstein condensates using two radio-frequency (rf) fields in the presence of gravity. We show that the fringe separation in the resulting interference pattern derives entirely from the energy difference between the two rf fields and not the gravitational potential difference between the two resonances. We subsequently demonstrate how the phase and polarization of the rf radiation directly control the phase of the matter wave interference and provide a semiclassical interpretation of the results.
Resumo:
We study a model for a two-mode atomic-molecular Bose-Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.