5 resultados para Spine Stability
em University of Queensland eSpace - Australia
Resumo:
Exercise is commonly used in the management of chronic musculoskeletal conditions, including chronic low back pain (CLBP). The focus of exercise is varied and may include parameters ranging from strength and endurance training, to specific training of muscle coordination and control. The assumption underpinning these approaches is that improved neuromuscular function will restore or augment the control and support of the spine and pelvis. In a biomechanical model of CLBP, which assumes that pain recurrence is caused by repeated mechanical irritation of pain sensitive structures [1], it is proposed that this improved control and stability would reduce mechanical irritation and lead to pain relief [1]. Although this model provides explanation for the chronicity of LBP, perpetuation of pain is more complex, and contemporary neuroscience holds the view that chronic pain is mediated by a range of changes including both peripheral (eg, peripheral sensitization) and central neuroplastic changes [2]. Although this does not exclude the role of improved control of the lumbar spine and pelvis in management of CLBP, particularly when there is peripheral sensitization, it highlights the need to look beyond outdated simplistic models. One factor that this information highlights is that the refinement of control and coordination may be more important than simple strength and endurance training for the trunk muscles. The objective of this article is to discuss the rationale for core stability exercise in the management of CLBP, to consider critical factors for its implementation, and to review evidence for efficacy of the approach.
Resumo:
During voluntary arm movements, the medial back muscles are differentially active. It is not known whether differential activity also occurs when the trunk is perturbed unpredictably, when the earliest responses are initiated by short-latency spinal mechanisms rather than voluntary commands. To assess this, in unpredictable and self-initiated conditions, a weight was dropped into a bucket that was held by the standing subject (n = 7). EMG activity was recorded from the deep (Deep MF), superficial (Sup MF) and lateral (Lat MF) lumbar multifidus, the thoracic erector spinae (ES) and the biceps brachii. With unpredictable perturbations, EMG activity was first noted in the biceps brachii, then the thoracic ES, followed synchronously in the components of the multifidus. During self-initiated perturbations, background EMG in the Deep MF increased two- to threefold, and the latency of the loading response decreased in six out of the seven subjects. In Sup MF and Lat MF, this increase in background EMG was not observed, and the latency of the loading response was increased. Short-latency reflex mechanisms do not cause differential action of the medial back muscles when the trunk is loaded. However, during voluntary tasks the central nervous system exerts a 'tuned response', which involves discrete activity in the deep and superficial components of the medial lumbar muscles in a way that varies according to the biomechanical action of the muscle component.
Resumo:
Background: Voluntary limb movements are associated with involuntary and automatic postural adjustments of the trunk muscles. These postural adjustments occur prior to movement and prevent unwanted perturbation of the trunk. In low back pain, postural adjustments of the trunk muscles are altered such that the deep trunk muscles are consistently delayed and the superficial trunk muscles are sometimes augmented. This alteration of postural adjustments may reflect disruption of normal postural control imparted by reduced central nervous system resources available during pain, so-called pain interference, or reflect adoption of an alternate postural adjustment strategy. Methods: We aimed to clarify this by recording electromyographic activity of the upper (obliquus extemus) and lower (transversus abdominis/obliquus internus) abdominal muscles during voluntary arm movements that were coupled with painful cutaneous stimulation at the low back. If the effect of pain on postural adjustments is caused by pain interference, it should be greatest at the onset of the stimulus, should habituate with repeated exposure, and be absent immediately when the threat of pain is removed. Sixteen patients performed 30 forward movements of the right arm in response to a visual cue (control). Seventy trials were then conducted in which arm movement was coupled with pain (pain trials) and then a further 70 trials were conducted without the pain stimulus (no pain trials). Results: There was a gradual and increasing delay of transversus abdominis/obliquus internus electromyograph and augmentation of obliquus externus during the pain trials, both of which gradually returned to control values during the no pain trials. Conclusion: The results suggest that altered postural adjustments of the trunk muscles during pain are not caused by pain interference but are likely to reflect development and adoption of an alternate postural adjustment strategy, which may serve to limit the amplitude and velocity of trunk excursion caused by arm movement.
Resumo:
Intra-abdominal pressure (IAP) increases during many tasks and has been argued to increase stability and stiffness of the spine. Although several studies have shown a relationship between the IAP increase and spinal stability, it has been impossible to determine whether this augmentation of mechanical support for the spine is due to the increase in IAP or the abdominal muscle activity which contributes to it. The present study determined whether spinal stiffness increased when IAP increased without concurrent activity of the abdominal and back extensor muscles. A sustained increase in IAP was evoked by tetanic stimulation of the phrenic nerves either. unilaterally or bilaterally at 20 Hz (for 5 s) via percutaneous electrodes in three subjects. Spinal stiffness was measured as the force required to displace an indentor over the L4 or L2 spinous process with the subjects lying prone. Stiffness was measured as the slope of the regression line fitted to the linear region of the force-displacement curve. Tetanic stimulation of the diaphragm increased IAP by 27-61% of a maximal voluntary pressure increase and increased the stiffness of the spine by 8-31% of resting levels. The increase in spinal stiffness was positively correlated with the size of the IAP increase. IAP increased stiffness at L2 and L4 level. The results of this:study provide evidence that the stiffness of the lumbar spine is increased when IAP is elevated. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A non-invasive in vivo technique was developed to evaluate changes in wrist joint stability properties induced by increased co-activation of the forearm muscles in a gripping task. Mechanical vibration at 45, 50 and 55 Hz was applied to the radial head in ten healthy volunteers. Vibrations of the styloid process of the radius and the distal end of the metacarpal bone of the index finger were measured with triaxial accelerometers. Joint stability properties were quantified by the transfer function gain between accelerations on either side of the wrist-joint. Gain was calculated with the muscles at rest and at five force levels ranging from 5% to 25% of maximum grip force (%MF). During contraction the gain was significantly greater than in control trial (0%MF) for all contractions levels at 45 and 50 Hz and a trend for 15%MF and higher at 55 Hz. Group means of contraction force and gain were significantly correlated at 45 (R-2 = 0.98) and 50 Hz (R-2 = 0.72), but not at 55 Hz (R-2 = 0.10). In conclusion, vibration transmission gain may provide a method to evaluate changes in joint stability properties. (c) 2005 Published by Elsevier Ltd.